


Lecture Notes in Artificial Intelligence 4548
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science



Nicola Olivetti (Ed.)

Automated Reasoning
withAnalyticTableaux
and Related Methods

16th International Conference,TABLEAUX 2007
Aix en Provence, France, July 3-6, 2007
Proceedings

13



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editor

Nicola Olivetti
LSIS - UMR CNRS 6168
Université Paul Cézanne
Domaine Universitaire de Saint-Jérôme
Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20, France
E-mail: nicola.olivetti@univ-cezanne.fr

Library of Congress Control Number: 2007929030

CR Subject Classification (1998): I.2.3, F.4.1, I.2, D.1.6, D.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-73098-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73098-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12077922 06/3180 5 4 3 2 1 0



Preface

This volume gathers the research papers presented at the International Confer-
ence on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2007) that took place July 3–6, 2007 in Aix en Provence, France.
This conference was the 16th in a series of international meetings held since 1992
(the list is on page VIII).

The Program Committee of TABLEAUX 2007 received 43 submissions, 16
of which were accepted for publication in the present proceedings, while 8 were
accepted as position papers.

In addition to the contributed papers, the program included three excellent
keynote talks by Piero Bonatti of Università di Napoli, by John-Jules Meyer of
Utrecht University, and by Cesare Tinelli of the University of Iowa. Finally, the
program was completed by three tutorials of deep interest: “The Tableau Work
Bench: Theory and Practice” (Pietro Abate and Rajeev Goré), “Tableau Meth-
ods for Interval Temporal Logics” (Valentin Goranko and Angelo Montanari),
and “Semistructured Databases and Modal Logic” (Serenella Cerrito).

Tableaux and related methods are a convenient formalism for automating
deduction in classical as well as in non-classical logics. The papers collected in
this volume witness the wide range of logics being covered: from intuitionistic
and substructural logics to modal logics (including temporal and dynamic log-
ics), from many-valued logics to nonmonotonic logics, from classical first-order
logic to description logics. Some contributions are focused on decision proce-
dures, others on efficient reasoning, as well as on implementation of theorem
provers. A few papers explore applications such as model-checking, verification,
or knowledge engineering. Finally, some contributions make use of tableaux as a
tool for theoretical investigation of logics. This variety of logics and applications
illustrates well the flexibility and the ubiquity of analytic tableaux and related
proof methods.

I want to express my gratitude to the invited speakers and to the tutorial
presenters who really contributed to making a rich and stimulating conference
program. I am very grateful to the members of the Program Committee for their
assistance in all phases of the conference and to other reviewers who ensured, to-
gether with the Program Committee members, a rigorous selection of the papers.
Their effort was decisive to keeping the high scientific standard of the conference.
I am also grateful to the members of the Steering Committee for their valu-
able support. I particularly thank my colleagues of the Local Organizing Com-
mittee: Belaid Benhamou, Djamal Habet, Philippe Jégou, Richard Ostrowski,
Cyril Pain-Barre, Odile Papini, Nicolas Prcovic, Vincent Risch, Pierre Siegel,
Cyril Terrioux, Eric Würbel; they worked hard with a truly cooperative spirit,



VI Preface

making the conference a successful event. A final thanks to the Office of Tourism
of Aix en Provence and to Promo Sciences for their professional assistance and
services.

July 2007 Nicola Olivetti



Organization

Program and Conference Chair

Nicola Olivetti Paul Cézanne University, France

Program Committee

Peter Baumgartner NICTA, Australia
Bernhard Beckert University of Koblenz-Landau, Germany
Patrick Blackburn INRIA Lorraine, France
Marta Cialdea University of Roma 3, Italy
Roy Dyckhoff University of St. Andrews, UK
Christian G. Fermüller University of Vienna, Austria
Ulrich Furbach University of Koblenz-Landau, Germany
Didier Galmiche LORIA, Henri Poincaré University, France
Martin Giese RISC, Johannes Kepler University, Austria
Rajeev Goré Australian National University, Australia
Jean Goubault-Larrecq LSV, ENS Cachan, France
Reiner Hähnle University of Chalmers, Sweden
Ullrich Hustadt University of Liverpool, UK
Christoph Kreitz University of Potsdam, Germany
Carsten Lutz University of Dresden, Germany
Angelo Montanari University of Udine, Italy
Ugo Moscato University of Milano-Bicocca, Italy
Neil V. Murray ILS Institute, University at Albany, USA
Ilkka Niemelä Helsinki University of Technology, Finland
Lawrence C. Paulson University of Cambridge, UK
Camilla Schwind LIF-CNRS, France
Viorica Sofronie-Stokkermans Max-Planck-Institut für Informatik, Germany
Arild Waaler University of Oslo, Norway

Additional Referees

Alessandro Avellone
Matthias Baaz
Thomas Bolander
Mirjana Borisavljević
Torben Braüner
Davide Bresolin
Elie Bursztein
Serenella Cerrito

Marcello D’Agostino
Stéphane Demri
Hans de Nivelle
Camillo Fiorentini
Guido Fiorino
Lev Gordeev
Andrew Haas
Keijo Heljanko

Jan Hladik
Arnold Holger
Jinbo Huang
Yevgeny Kazakov
Kentaro Kikuchi
Dominique

Larchey-Wendling
Patrick Maier



VIII Organization

Daniel Méry
George Metcalfe
Maja Milicic
Andrea Orlandini

Mario Ornaghi
Gabriele Puppis
Robert Rothenberg
Gernot Salzer

Peter Schotch
Yaroslav Shramko
Evgeny Zolin

Steering Committee

Rajeev Goré Australian National University, Australia
(President)

Bernhard Beckert University of Koblenz-Landau, Germany
(Vice-President)

Stéphane Demri ENS Cachan, France
Roy Dyckhoff University of St. Andrews, UK
Ulrich Furbach University of Koblenz-Landau, Germany
Didier Galmiche LORIA, Henri Poincaré University, France
Reiner Hähnle University of Chalmers, Sweden
Nicola Olivetti Paul Cézanne University, France

Organization

TABLEAUX 2007 was organized by the INCA team (Inference, Constraints
and Applications) of LSIS CNRS UMR 6168 (Information and System Sciences
Laboratory).

Sponsoring Institutions

LSIS Laboratory CNRS UMR 6168
Université Paul Cézanne
Université de Provence
Université de la Méditerranée
Ville d’Aix en Provence
Communauté du Pays d’Aix
Conseil Général des Bouches du Rhône
Région Provence Alpes Côte d’Azur

Previous Conferences

1992 Lautenbach, Germany
1993 Marseille, France
1994 Abingdon, UK
1995 St. Goar, Germany
1996 Terrasini, Italy
1997 Pont-à-Mousson, France
1998 Oisterwijk, The Netherlands
1999 Saratoga Springs, USA

2000 St. Andrews, UK
2001 Siena, Italy (part of IJCAR)
2002 Copenhagen, Denmark
2003 Rome, Italy
2004 Cork, Ireland (part of IJCAR)
2005 Koblenz, Germany
2006 Seattle, USA (part of IJCAR)



Table of Contents

Invited Talks

Nonmonotonic Description Logics – Requirements, Theory, and
Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Piero A. Bonatti

Our Quest for the Holy Grail of Agent Verification . . . . . . . . . . . . . . . . . . . 2
John-Jules Ch. Meyer

An Abstract Framework for Satisfiability Modulo Theories . . . . . . . . . . . . 10
Cesare Tinelli

Research Papers

Axiom Pinpointing in General Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Franz Baader and Rafael Peñaloza

Proof Theory for First Order �Lukasiewicz Logic . . . . . . . . . . . . . . . . . . . . . . 28
Matthias Baaz and George Metcalfe

A Tableau Method for Public Announcement Logics . . . . . . . . . . . . . . . . . . 43
Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and
Tiago de Lima

Bounded Model Checking with Description Logic Reasoning . . . . . . . . . . . 60
Shoham Ben-David, Richard Trefler, and Grant Weddell

Tableau Systems for Logics of Subinterval Structures over Dense
Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Davide Bresolin, Valentin Goranko, Angelo Montanari, and
Pietro Sala

A Cut-Free Sequent Calculus for Bi-intuitionistic Logic . . . . . . . . . . . . . . . 90
Linda Buisman and Rajeev Goré

Tableaux with Dynamic Filtration for Layered Modal Logics . . . . . . . . . . 107
Olivier Gasquet and Bilal Said

The Neighbourhood of S0.9 and S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Roderic A. Girle

EXPTIME Tableaux with Global Caching for Description Logics with
Transitive Roles, Inverse Roles and Role Hierarchies . . . . . . . . . . . . . . . . . . 133

Rajeev Goré and Linh Anh Nguyen



X Table of Contents

Tree-Sequent Methods for Subintuitionistic Predicate Logics . . . . . . . . . . . 149
Ryo Ishigaki and Kentaro Kikuchi

A Sequent Calculus for Bilattice-Based Logic and Its Many-Sorted
Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Ekaterina Komendantskaya

Updating Reduced Implicate Tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Neil V. Murray and Erik Rosenthal

A Bottom-Up Approach to Clausal Tableaux . . . . . . . . . . . . . . . . . . . . . . . . 199
Nicolas Peltier

Differential Dynamic Logic for Verifying Parametric Hybrid Systems . . . 216
André Platzer

System Descriptions

Improvements to the Tableau Prover PITP . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Alessandro Avellone, Guido Fiorino, and Ugo Moscato

KLMLean 2.0: A Theorem Prover for KLM Logics of Nonmonotonic
Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Laura Giordano, Valentina Gliozzi, and Gian Luca Pozzato

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245



Nonmonotonic Description Logics –

Requirements, Theory, and Implementations

Piero A. Bonatti

Dipartimento di Scienze Fisiche
Sezione di Informatica

Università di Napoli Federico II
Napoli, Italy

bonatti@na.infn.it

Abstract. The Semantic Web and a number of modern knowledge-
based applications have turned ontologies into a familiar and popular
ICT notion. Description Logics (DLs) are one of the major formalisms
for encoding ontologies.

Many “users” of such formalisms – that is, ontologies writers – would
appreciate DLs to have nonmonotonic features. For example, it would
be appealing to describe taxonomies by means of general default prop-
erties that may be later overridden in special cases; a similar behavior is
supported by all object-oriented languages, after all. However, nonmono-
tonic extensions of DLs involve many tricky technical problems.

This talk will briefly illustrate some of the major requirements for
nonmonotonic description logics and some of the formalisms currently
available. Then we shall point out the major problems that still have to
be solved in order to apply standard tableaux optimization techniques to
nonmonotonic DLs. Since DLs are usually at least PSPACE-hard, such
optimization techniques are crucial in making these formalisms usable in
practice.

For example, it seems very difficult to find a tableaux system for a
fragment of nonmonotonic DLs where a tableau needs not be stored
entirely in memory (because it is enough to construct and verify a single
branch at each iteration, for example).

Since “traditional” nonmonotonic semantics are not completely sat-
isfactory, it may be possible to solve both semantic shortcomings and
optimization problems by adopting suitable new logics.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Our Quest for the Holy Grail of Agent

Verification

John-Jules Ch. Meyer

Department of Information and Computing Sciences,
Utrecht University,
The Netherlands
jj@cs.uu.nl

Abstract. Since the inception of agent technology almost two decades
ago, researchers have worked both on the formal, theoretical aspects
of intelligent agents and on the realisation / implementation of them.
However, the link between the two has always remained rather unclear,
to this day. Although there is a definite need for the verification of agents,
the methods and techniques for this are still in their infancy. We describe
our personal ongoing quest for the ‘right’ approach to agent verification.

1 Cognitive Agent Programming

The basic ideas of agent programming go back to Aristotle’s practical reasoning
(cf. [5], p. 728), augmented by the modern philosophical concepts of the inten-
tional stance by Dennett [16] and that of intention by Bratman [10]. In short,
practical reasoning is about specifying the decision of an agent by coining it in
a rule (a so-called practical syllogism). Together with the idea of treating an
entity as a rational agent deliberating its beliefs and goals in order to come up
with the next action (Dennett’s intentional stance), and the idea that resource-
bounded agents should always settle on some of their desires and then stick with
these as long as is rationally possible (the concept of an intention), this provides
the ingredients of the current agent-oriented programming languages such as
Agent0 [42], AgentSpeak(L) [34] and 3APL [24,14]/ 2APL [13] (also cf. [7]). In
particular, we are interested in what we call cognitive or BDI agent program-
ming, in which the agent has mental attitudes such as beliefs, desires (goals) and
intentions (plans).

For instance, in 3APL and 2APL an agent has a belief base, a goal base and
a plan base. The programmer can use Plan Generation (PG) and Plan Revision
(PR) rules of the form

γ|β → π

and
π1|β → π2

respectively, to let the agent generate plans π, given the agent’s beliefs β and
goals γ, and revise plans π1 to π2 when necessary (indicated by a certain belief
condition β) (cf.[7,13]). As one can see, these rules are a direct operationalization
of practical reasoning together with the ideas of Dennett and Bratman.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 2–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Our Quest for the Holy Grail of Agent Verification 3

2 Agent Verification

Since the inception of agent technology almost two decades ago, researchers have
worked both on the formal, theoretical aspects of intelligent agents and on the
realisation / implementation of them [12,35,28,43]. However, the link between
the two has always remained rather unclear, to this day. A case in point is the
pioneering work of Rao & Georgeff, who developed their famous BDI (beliefs-
desires-intentions) logic ([35]) on the one hand, while working on their BDI
architecture and programming language AgentSpeak(L) ([34]) to realize agents,
on the other. Although the names of the logic and architecture (both contain-
ing ‘BDI’) suggest an intrinsic connection, they are only superficially related.
This also holds for the BDI-like logic and the programming language Agent0 in
the pioneering first paper on agent-oriented programming by Shoham [42]. More
generally, this phenomenon is referred to in the literature as the ‘gap’ between
agent logics and implemented agent systems. One of the problems is that the
BDI notions in agent logics generally are not ‘grounded’ in agent computations:
they are rather general notions, modelled by abstract (accessibility) relations in
modal logic, and have no apparent association with concrete agent behaviour,
and an agent program in particular (cf. [44]). On the other hand one has in-
creasingly come to realize that complex agent-based systems need verification.
For instance, in the domain of space exploration one is getting more and more
interested in agent systems, but also feels the need for verifying them [36]. Al-
though here it is an absolute necessity in view of huge investments of money
and the fact that possibly also human lives are at stake, there are many other
examples, where the sheer complexity of agent-based systems to be deployed
calls for formal verification. However, since it is hard to connect the practice of
agent programming with the formal counterpart of agent logics, it has been hard
to establish a solid framework for agent verification.

3 Our Approaches

In the last 15 years or so we have been working on both agent logics (viz.
the KARO framework [28]) and agent programming (viz. the agent languages
3APL [24,14] and, more recently, 2APL [13]), and personally I have been always
fascinated by the relation between the two, and in particular how agent logics can
be used to specify and verify agent programs. Furthermore, having our ‘roots’ in
semantics and correctness of ‘traditional’ programming in the style of De Bakker
[6], when attempting to prove agent programs correct, we have always been
very interested to (re-)use methods and techniques from ‘traditional’ program
correctness, and try to adapt and extend them to deal with agent programs.
Of course, these adaptations and extensions are needed to cater for the typical
agent-oriented features such as the BDI attitudes in particular, not present and
dealt with in traditional approaches.

As we saw before one of the biggest problems is to connect (‘ground’) BDI
notions in agent logics with agent programming, i.e. more computational notions.



4 J.-J.C. Meyer

Agent logics are generally not grounded: notions like beliefs, goals, etc. and, more
generally, possible worlds and accessibility relations are very abstract and not
connected directly to computational notions. Therefore no direct link between
agent logics and agent programming exists, even if both use what seems to be
at first sight the same notions (such as beliefs and goals).

In this section we will discuss a number of routes we have taken attempting
to bridge the gap between agent programming and logic.

3.1 Programming KARO Agents

KARO is an expressive formalism to specify agent attitudes ([28]). It is a blend
of dynamic and epistemic logic augmented with modalities for motivational atti-
tudes (desires, goals, commitments, ...) Because of the fact that it is based on a
logic of action rather than time, like the other well-known agent logics, we always
had the idea that KARO is closer than other agent logics to a computational
approach to agents such as agent programming. In [32] we have explored the
idea of putting agent programs as actions into the dynamic logic operators to
be able to reason about these programs within the KARO framework, but the
idea was only elaborated in a rather loose and preliminary fashion. We will see
that this idea was later picked up again in a more rigorous manner.

3.2 An Executable Core of KARO

One way, of course, to establish a relation between a program and its logical
specification is to use the specification as program itself. This has been the
philosophy of METATEM [21]: to execute specifications of agents written in an
executable fragment of temporal logic augmented with BDI concepts (see e.g.
[22]). Together with the METATEM team we have looked whether the same
line could be followed with specifications in the KARO framework, a blend of
dynamic and epistemic logic, augmented with other BDI-like concepts (see [28]).
We succeeded in mimicking this idea for KARO [29,30], but the concession we
had to make is that we had to reduce the very expressive KARO framework to a
rather small core, with the drawback that much of the expressiveness was lost.

3.3 The GOAL Method

In [25,23] we considered a very simple agent programming logic with declarative
goals (but without intentions or procedural goals / plans!), and tried to give a
complete programming theory for it, viz. a programming language together with
a formal semantics, as well as a correctness logic. Interestingly, apart from the
familiar Hoare triples also ideas from concurrency theory such as the UNITY
framework ([11]) were used. It was meant as a kind of proof of concept that
one could try to get such a complete theory for agent programming, but, admit-
tedly, the power of the programming language, called GOAL, was rather limited
(although deliberately so). Some of these ideas were later used to enhance our
programming language 3APL with both declarative and procedural goals [38,14].



Our Quest for the Holy Grail of Agent Verification 5

3.4 Agent Logics as Program Logics: Grounding BDI-Like Logics

Recently we have taken up our efforts to ground agent logics in a more principled
way.

Grounding KARO. In [26,27] this is attempted by making the notions that
occur in agent logics (e.g. KARO) such as beliefs and goals less abstract and
more computational (e.g. by not basing them on abstract accessibility relations
but on certain types of knowledge bases, yielding a ‘state-based semantics’), so
that reasoning about these notions becomes relevant for reasoning about concrete
agent programs. But also this comes with the price of reducing the logic (KARO)
to a core.

Relating accessibility and execution (CTLAP L). In [15] it is proposed to
base the abstract accessibility relations of agent logics directly on the (Plotkin-
style) operational semantics of agent programs. In this particular proposal the
temporal logic CTL* [18] is employed, where the temporal accessibility relation
is specified by a transition system for the operational semantics of the agent
programming language (APL) at hand, thus establishing the grounding of the
logic. By doing this one can use the logical language to express properties of
(the behavior of) agent programs written in APL, which may then be verified
by model-checking, for instance.

A dedicated PDL version for APLs. In a recent paper [4] we go about in a
different way: we consider a (simple) agent programming language SimpleAPL
together with its operational semantics. We next devise a PDL-based [20]) agent
logic tailored to constructs that are present in SimpleAPL. This is done by
employing a function that transforms the basic ingredients of SimpleAPL to ex-
pressions in the logic. Next we give a sound and complete axiomatization of this
logic. We then show the relevance of the logic for proving properties of programs
written in SimpleAPL by proving a theorem exactly relating the transition se-
mantics of the programs appearing in the PDL-like logic and the operational
semantics of SimpleAPL. In this way we know that we can use the devised logic
for reasoning about SimpleAPL programs, and thus show correctness properties
of these programs. We show how this can be done by way of an example. The
reasoning can be assisted by automated verfication methods, and actually these
(viz. [41]) were used in verifying the example mentioned.

3.5 Dynamic Logic for 3APL

We have also proposed a verification logic for the language 3APL directly as for
any other traditional programming language without resorting to a connection
with agent logics. In [40,37] we propose a dynamic logic for the execution of plans
where also it is taken into account that plans may be revised by plan revision
(PR) rules. As one may appreciate, the latter renders the execution of plans
highly ‘non-compositional’, which results in the fact that in this situation the
standard validity in dynamic logic, [π1;π2]ϕ ↔ [π1][π2]ϕ, is not valid anymore.



6 J.-J.C. Meyer

Therefore, first a logic is given for restricted application of plan revision (at most
n times, for a natural number n). Then this is extended to a logic for arbitrary
plan revision, yielding an infinitary (so-called ω-)axiomatization, which is shown
to be complete. Although the result is satisfying from a technical view, it is thus
quite unsatisfactory in a practical sense, since it does not really yield a feasible
verification method. It also raised the discussion among ourselves what exactly
the program is in a language such as 3APL: the plans that are executed (and
revised on the fly!), or the interpreter implementing the deliberation process (in
this case the alternation of plan execution and plan revision). If we would say
that it is the latter, we would rather have to look at a program (e.g. dynamic)
logic where the higher-level (‘meta’-) actions execute plan and apply rule(r) are
the actions that should be reasoned about. This matter is not yet fully resolved
in our minds...

3.6 Rapid Prototyping of APLs in Maude

One of our recent papers constitutes a proposal to use the term rewriting lan-
guage Maude [33] for rapid prototyping agent programming languages (APLs).
The idea is to write the operational semantics of an APL (in terms of a Plotkin-
style transition system) directly in Maude. As Maude also comes with an LTL
model checker this also provides possibilities to check properties of agent pro-
grams written in the APL at hand, that is, potentially, but as yet we have not
yet pursued this line of research. We think this will be fruitful, and would bring
us also closer to related work done on model-checking multi-agent systems and
the agent language AgentSpeak/Jason in particular ([8,9,31]).

3.7 The ‘Macro’ Level of Multi-agent Systems

Here we mention some work we’ve done on the ‘macro’ level of multi-agent sys-
tems. Besides programming individual cognitive agents, it is also very important
to consider systems at the larger scale of multi-agent systems or agent societies.
Here we have to deal with the interesting but difficult issue of balancing the
autonomy of the individual agents with a desired form of group behavior, which
can be captured in norms (cf. [17]). This could be called the problem of estab-
lishing the micro-macro link in multi-agent systems. To keep the agents in line,
so to speak, special software systems, called electronic institutions, may be used
that regulate the agents’ behavior enforcing the norms by protocols ([19]). Of
course, it is then crucial to know whether these protocols (concrete procedural
constraints) are in line with the norms (high-level declarative constraints). We
have worked on methods and techniques adopted and adapted from traditional
programming, such as temporal logic, to be able to verify that these protocols
comply with the norms ([3,1]). The interesting thing here is that using these
methods especially the more informal assumptions under which the protocol can
be proven norm-compliant, become explicit. Furthermore, in [2,1] we have given
a method to derive protocols on the basis of more declarative ‘landmarks’, using
Büchi automata and temporal logic.



Our Quest for the Holy Grail of Agent Verification 7

4 Conclusion

From the above it may be clear that the last word is not yet said about this
topic. As can be seen from our proposals, we try to bridge the gap from both
sides: from agent programming to logic, as well as from logic to programs. We
feel that we do make some progress, and at least get more understanding of the
issues involved.

Acknowledgments. I would like to thank my co-authors of the various ref-
erenced papers, companions on the quest for agent verification, for the many
discussions on the issues raised in this paper.

References

1. Aldewereld, H.: Autonomy vs. Conformity: An Institutional Perspective on Norms
and Ptotocols, Ph.D. thesis, Utrecht University, Utrecht (2007)

2. Aldewereld, H., Dignum, F., Meyer, J.-J.Ch.: Designimg Protocols for Agent In-
stitutions, accepted for ProMAS2007 (2007)

3. Aldewereld, H., Vázquez-Salceda, J., Dignum, F., Meyer, J.-J.Ch.: Verifying Norm
Compliancy of Protocols. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination,
Organizations, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI),
vol. 3913, pp. 231–245. Springer, Berlin, Heidelberg (2006)

4. Alechina, N., Dastani, M., Logan, B., Meyer, J.-J.Ch.: A Logic of Agent Programs.
In: Proc. AAAI-07 (to appear, 2007)

5. Audi, R. (ed.): The Cambridge Dictionary of Philosophy. Cambridge Univ. Press,
Cambridge (1999)

6. de Bakker, J.W.: Mathematical Theory of Program Correctness. Prentice-Hall In-
ternational, London (1980)

7. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent
Programming. Kluwer, Boston, Dordrecht, London (2005)

8. Bordini, R.H., Moreira, A.F.: Proving the Asymmetry Thesis Principles for a BDI
Agent-Oriented Programming Language, Electronic Notes in Theoretical Com-
puter Science 70(5) (2002)

9. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Autonomous Agents and Multi-Agent Systems 12(2),
239–256 (2006)

10. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press,
Massachusetts (1987)

11. Chandy, K.M., Misra, J.: Parallel Program Design. Addison-Wesley, London (1988)
12. Cohen, P.R., Levesque, H.J.: Intention is Choice with Commitment. Artificial In-

telligence 42(3), 213–261 (1990)
13. Dastani, M.: Meyer, J.-J.Ch.: A Practical Agent Programming Language, accepted

for ProMAS07 (2007)
14. Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.-J.Ch.: A Programming

Language for Cognitive Agents: Goal-Directed 3APL. In: Dastani, M., Dix, J., El
Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, Springer,
Berlin (2004)



8 J.-J.C. Meyer

15. Dastani, M., van Riemsdijk, B., Meyer, J.-J.Ch.: A Grounded Specification Lan-
guage for Agent Programs. In: Proc. AAMAS07, ACM Press, New York (2007)

16. Dennett, D.: The Intentional Stance, Bradford Books/MIT Press, Cambridge MA
(1987)

17. Dignum, V.: A Model for Organizational Interaction (Based on Agents, Founded
in Logic), Ph.D. Thesis, Utrecht University, Utrecht (2004)

18. Emerson, E.A., Halpern, J.Y.: Sometimes and Not Never Revisited: on Branching
versus Linear Time Temporal Logic. J. ACM 33(1), 151–178 (1986)

19. Esteva, M., Padget, J., Sierra, C.: Formalizing a Language for Institutions and
Norms. In: Meyer, J.-J.Ch., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333,
pp. 348–366. Springer, Berlin (2002)

20. Fischer, M.J., Ladner, R.E.: Propositional Dynamic Logic of Regular Programs. J.
Comput. Syst. Sci 18(2), 194–211 (1979)

21. Fisher, M.: A Survey of Concurrent METATEM – The language and Its Appli-
cations. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp.
480–505. Springer, Berlin (1994)

22. Fisher, M.: Implementing Temporal Logics: Tools for Execution and Proof (Tuto-
rial Paper). In: Toni, F., Torroni, P. (eds.) Computational Logic in Multi-Agent
Systems. LNCS (LNAI), vol. 3900, pp. 129–142. Springer, Heidelberg (2006)

23. Hindriks, K.V.: Agent Programming Languages: Programming with Mental Mod-
els, Ph.D. thesis, Utrecht University, Utrecht (2001)

24. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.: Agent Pro-
gramming in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems 2(4),
357–401 (1999)

25. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.: Agent Program-
ming with Declarative Goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

26. Hindriks, K.V., Meyer, J.-J.Ch.: An Agent Program Logic with Declarative Goals.
In: Dunin-Keplicz, B., Verbrugge, R. (eds.) Proc. FAMAS06 (ECAI, Workshop on
Formal Aspects of Multi-Agent Systems) ECCAI, 2006, pp. 1-15 (2006)

27. Hindriks, K.V., Meyer, J.-J.Ch.: Agent Logics as Program Logics: Grounding
KARO. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI),
vol. 4314, pp. 404–418. Springer, Heidelberg (2007)

28. van der Hoek, W., van Linder, B., Meyer, J.-J.Ch.: An Integrated Modal Approach
to Rational Agents. In: Wooldridge, M., Rao, A. (eds.) Foundations of Rational
Agency. Applied Logic Series, vol. 14, pp. 133–168. Kluwer, Dordrecht (1998)

29. Hustadt, U., Dixon, C., Schmidt, R.A., Fisher, M., Meyer, J.-J.Ch.: Reasoning
about Agents in the KARO Framework. In: Bettini, C., Montanari, A. (eds.) Civi-
dale del Friuli, Italy. Eighth International Symposium (TIME-01), Cividale del
Friuli, Italy, pp. 206–213. IEEE Press, Los Alamitos, CA, USA (2001)

30. Hustadt, U., Dixon, C., Schmidt, R.A., Fisher, M., Meyer, J.-J.Ch.: Verification
within the KARO Agent Theory. In: Rouff, C., Hinchey, M., Rash, J., Truszkowski,
W., Gordon-Spears, D. (eds.) Agent Technology from a Formal Perspective, NASA
Monographs in Systems and Software Engineering Series, pp. 193–225. Springer,
Berlin (2006)

31. Lomuscio, A., Raimondi, F.: Mcmas: A Model Checker for Multi-Agent Systems.
In: Proc. TACAS ’06, 450–454 (2006)

32. Meyer, J.-J.Ch., de Boer, F.S., van Eijk, R.M., Hindriks, K.V., van der Hoek, W.:
On Programming KARO Agents. Logic Journal of the IGPL 9(2), 245–256 (2001)

33. Ölveczky, P.C.: Formal Modeling and Analysis of Distributed Systems in Maude,
lecture notes (2005)



Our Quest for the Holy Grail of Agent Verification 9

34. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Berlin (1996)

35. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture.
In: Allen, J., Fikes, R., Sandewall, E. (eds.) Principles of Knowledge Representation
and Reasoning. Second International Conference (KR’91), pp. 473–484. Morgan
Kaufmann, Washington (1991)

36. Rash, J.L., Rouff, C.A., Truszkowski, W., Gordon, D.F., Hinchey, M.G. (eds.):
FAABS 2000. LNCS (LNAI), vol. 1871. Springer, Berlin, Heidelberg (2001)

37. van Riemsdijk, M.B.: Cognitive Agent Programming: A Semantic Approach, Ph.D.
Thesis, Utrecht University, Utrecht (2006)

38. van Riemsdijk, M.B., van der Hoek, W., Meyer, J.-J.Ch.: Agent Programming in
Dribble: from Beliefs to Goals Using Plans. In: Rosenschein, J.S., Sandholm, T.,
Wooldridge, M., Yokoo, M. (eds.) Autonomous Agents and Multiagent Systems.
2nd Int. J. Conf (AAMASO03), Melbourne Australia, pp. 393–400. ACM Press,
New York (2003)

39. van Riemsdijk, M.B., de Boer, F.S., Dastani, M., Meyer, J.-J.Ch.: Prototyping
3APL in the Maude Term Rewriting Language. In: Inoue, K., Satoh, K., Toni, F.
(eds.) Computational Logic in Multi-Agent Systems. LNCS (LNAI), vol. 4371, pp.
95–114. Springer, Berlin (2007)

40. van Riemsdijk, M.B., de Boer, F.S., Meyer, J.-J.Ch.: Dynamic Logic for Plan Re-
vision in Intelligent Agents. J Logic Computation 16(3), 375–402 (2006)

41. Schmidt, R.A.: PDL-TABLEAU, (2003) http://www.cs.man.ac.uk/schmidt/
pdl-tableau

42. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51–92
(1993)

43. Wooldridge, M.J.: Reasoning about Rational Agents. MIT Press, Cambridge, MA
(2000)

44. van der Hoek, W., Wooldridge, M.: Towards a Logic of Rational Agency. Logic
Journal of the IGPL 11(2), 133–157 (2003)

http://www.cs.man.ac.uk/schmidt/pdl-tableau
http://www.cs.man.ac.uk/schmidt/pdl-tableau


An Abstract Framework for

Satisfiability Modulo Theories

Cesare Tinelli�

Department of Computer Science
The University of Iowa
tinelli@cs.uiowa.edu

Abstract. Satisfiability Modulo Theories (SMT) studies methods for
checking the satisfiability (or, dually, the validity) of first-order formulas
with respect to some logical theory T of interest. What distinguishes
SMT from general automated deduction is that the background theory T
need not be finitely or even first-order axiomatizable, and that specialized
inference methods are used for each theory. By being theory-specific and
restricting their language to certain classes of formulas (such as, typically
but not exclusively, ground formulas), these specialized methods can be
implemented into solvers that are more efficient in practice than general-
purpose theorem provers. While SMT techniques have been traditionally
used to support deductive software verification, they are now finding
applications in other areas of computer science such as, for instance,
planning, model checking and automated test generation.

Theory-specific solvers can be often described conveniently in terms
of tableau calculi, especially if one wants to prove that a solver decides a
certain fragment of a theory T . In practice, however, most modern SMT
solvers are not tableau-based and follow one of two main approaches,
both of which exploit the recent technological advances in SAT solv-
ing. The “eager” approach uses smart encodings to propositional logic
to compile T -satisfiability problems into propositional satisfiability prob-
lems, which can then be solved by off-the-self SAT solvers. The “lazy”
approach instead uses general run-time mechanisms to separate plain
Boolean reasoning from theory reasoning proper, doing the latter with
small specialized procedures, and delegating the former to a dedicated
SAT engine based on the DPLL procedure.

After a brief overview of SMT, this talk focuses on a general and ex-
tensible abstract framework, Abstract DPLL Modulo Theories, for mod-
eling lazy STM solvers declaratively and studying some of their theoretical
properties. The framework is used to present and discuss a few basic vari-
ants of the lazy approach, in the case of a single and of multiple background
theories. The talk also presents an extension of the framework that dras-
tically simplifies the implementation of theory-specific components, and
could be of interest to implementors of ground tableaux calculi as well.

� The author’s research described in this talk is the result of past and on-going col-
laborations with Clark Barrett, Robert Nieuwenhuis, and Albert Oliveras on the
subject, and was made possible with the partial support of grants #0237422 and
#0551646 from the National Science Foundation.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, p. 10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Axiom Pinpointing in General Tableaux

Franz Baader1 and Rafael Peñaloza2,�

1 Theoretical Computer Science, TU Dresden, Germany
baader@inf.tu-dresden.de

2 Intelligent Systems, University of Leipzig, Germany
penaloza@informatik.uni-leipzig.de

Abstract. Axiom pinpointing has been introduced in description logics
(DLs) to help the user to understand the reasons why consequences hold
and to remove unwanted consequences by computing minimal (maximal)
subsets of the knowledge base that have (do not have) the consequence
in question. The pinpointing algorithms described in the DL literature
are obtained as extensions of the standard tableau-based reasoning algo-
rithms for computing consequences from DL knowledge bases. Although
these extensions are based on similar ideas, they are all introduced for a
particular tableau-based algorithm for a particular DL.

The purpose of this paper is to develop a general approach for extend-
ing a tableau-based algorithm to a pinpointing algorithm. This approach
is based on a general definition of “tableaux algorithms,” which captures
many of the known tableau-based algorithms employed in DLs, but also
other kinds of reasoning procedures.

1 Introduction

Description logics (DLs) [2] are a successful family of logic-based knowledge rep-
resentation formalisms, which can be used to represent the conceptual knowledge
of an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and bio-medical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [13] as standard
ontology language for the semantic web. As a consequence of this standardiza-
tion, several ontology editors support OWL [15, 18, 14], and ontologies written in
OWL are employed in more and more applications. As the size of such ontologies
grows, tools that support improving the quality of large DL-based ontologies be-
come more important. Standard DL reasoners [12, 10, 24] employ tableau-based
algorithms [6], which can be used to detect inconsistencies and to infer other
implicit consequences, such as subsumption relationships between concepts or
instance relationships between individuals and concepts.

For a developer or user of a DL-based ontology, it is often quite hard to
understand why a certain consequence holds,1 and even harder to decide how to
� Funded by the German Research Foundation (DFG) under grant GRK 446.
1 Note that this consequence may also be the inconsistency of the knowledge base or

the unsatisfiability of a concept w.r.t. the knowledge base.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 11–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



12 F. Baader and R. Peñaloza

change the ontology in case the consequence is unwanted. For example, in the
current version of the medical ontology SNOMED [25], the concept Amputation-
of-Finger is classified as a subconcept of Amputation-of-Arm. Finding the axioms
that are responsible for this among the more than 350,000 terminological axioms
of SNOMED without support by an automated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [22]
describe an algorithm for computing all the minimal subsets of a given knowledge
base that have a given consequence. To be more precise, the knowledge bases
considered in [22] are so-called unfoldable ALC-terminologies, and the unwanted
consequences are the unsatisfiability of concepts. The algorithm is an extension of
the known tableau-based satisfiability algorithm for ALC [23], where labels keep
track of which axioms are responsible for an assertion to be generated during
the run of the algorithm. The authors also coin the name “axiom pinpointing”
for the task of computing these minimal subsets. Following Reiter’s approach for
model-based diagnosis [20], Schlobach [21] uses the minimal subsets that have
a given consequence together with the computation of Hitting Sets to compute
maximal subsets of a given knowledge base that do not have a given (unwanted)
consequence.2 Whereas the minimal subsets that have the consequence help the
user to comprehend why a certain consequence holds, the maximal subsets that
do not have the consequence suggest how to change the knowledge base in a
minimal way to get rid of a certain unwanted consequence.

The problem of computing minimal (maximal) subsets of a DL knowledge base
that have (do not have) a given consequence was actually considered earlier in
the context of extending DLs by default rules. In [4], Baader and Hollunder solve
this problem by introducing a labeled extension of the tableau-based consistency
algorithm for ALC-ABoxes [11], which is very similar to the one described later
in [22]. The main difference is that the algorithm described in [4] does not di-
rectly compute minimal subsets that have a consequence, but rather a monotone
Boolean formula, called clash formula in [4], whose variables correspond to the
axioms of the knowledge bases and whose minimal satisfying (maximal unsat-
isfying) valuations correspond to the minimal (maximal) subsets that have (do
not have) a given consequence.

The approach of Schlobach and Cornet [22] was extended by Parsia et al. [19]
to more expressive DLs, and the one of Baader and Hollunder [4] was extended by
Meyer et al. [17] to the case ofALC-terminologies with general concept inclusions
(GCIs), which are no longer unfoldable. The choice of the DL ALC in [4] and [22]
was meant to be prototypical, i.e., in both cases the authors assumed that their
approach could be easily extended to other DLs and tableau-based algorithms
for them. However, the algorithms and proofs are given for ALC only, and it is
not clear to which of the known tableau-based algorithms the approaches really
generalize. For example, the pinpointing extension described in [17] follows the
approach introduced in [4], but since GCIs require the introduction of so-called

2 Actually, he considers the complements of these sets, which he calls minimal diag-
noses.



Axiom Pinpointing in General Tableaux 13

blocking conditions into the tableau-based algorithm to ensure termination, there
are some new problems to be solved.

Thus, one can ask to which DLs and tableau-based algorithms the approaches
described in [4, 22] apply basically without significant changes, and with no
need for a new proof of correctness. This paper is a first step towards answering
this question. We develop a general approach for extending a tableau-based
algorithm to a pinpointing algorithm, which is based on the the ideas underlying
the pinpointing algorithm described in [4]. To this purpose, we define a general
notion of “tableaux algorithm,” which captures many of the known tableau-
based algorithms for DLs and Modal Logics,3 but also other kinds of decision
procedures, like the polynomial-time subsumption algorithm for the DL EL [1].
This notion is simpler than the tableau systems introduced in [3] in the context of
translating tableaux into tree automata, and it is not restricted to tableau-based
algorithms that generate tree-like structures.

Axiom pinpointing has also been considered in other research areas, though
usually not under this name. For example, in the SAT community, people have
considered the problem of computing maximally satisfiable and minimally unsat-
isfiable subsets of a set of propositional formulae. The approaches for computing
these sets developed there include special purpose algorithms that call a SAT
solver as a black box [16, 7], but also algorithms that extend a resolution-based
SAT solver directly [8, 26]. To the best of our knowledge, extensions of tableau-
based algorithms have not been considered in this context, and there are no
general schemes for extending resolution-based solvers.

In the next section, we define the notions of minimal (maximal) sets having
(not having) a given consequence in a general setting, and show some interesting
connections between these two notions. In Section 3 we introduce our general
notion of a tableau, and in Section 4 we show how to obtain pinpointing extension
of such tableaux. Because of the space restriction, we cannot give complete proofs
of our results. They can be found in [5].

2 Basic Definitions

Before we can define our general notion of a tableau algorithm, we need to define
the general form of inputs to which these algorithms are applied, and the decision
problems they are supposed to solve.

Definition 1 (Axiomatized input, c-property). Let I be a set, called the
set of inputs, and T be a set, called the set of axioms. An axiomatized input
over these sets is of the form (I, T ) where I ∈ I and T ∈ Pfin(T) is a finite
subset of T. A consequence property (c-property) is a set P ⊆ I×Pfin(T) such
that (I, T ) ∈ P implies (I, T ′) ∈ P for every T ′ ⊇ T .

3 Note that these algorithms are decision procedures, i.e., always terminate. Currently,
our approach does not cover semi-decision procedures like tableaux procedures for
first-order logic.



14 F. Baader and R. Peñaloza

Intuitively, c-properties on axiomatized inputs are supposed to model conse-
quence relations in logic, i.e., the c-property P holds if the input I “follows” from
the axioms in T . The monotonicity requirement on c-properties corresponds to
the fact that we want to restrict the attention to consequence relations induced
by monotonic logics. In fact, for non-monotonic logics, looking at minimal sets
of axioms that have a given consequence does not make much sense.

To illustrate Definition 1, assume that I is a countably infinite set of proposi-
tional variables, and that T consists of all Horn clauses over these variables, i.e.,
implications of the form p1∧. . .∧pn → q for n ≥ 0 and p1, . . . , pn, q ∈ I. Then the
following is a c-property according to the above definition: P := {(p, T ) | T |= p},
where T |= q means that all valuations satisfying all implications in T also sat-
isfy q. As as concrete example, consider Γ := (p, T ) where T consists of the
following implications:

ax1: → q, ax2: → s, ax3: s→ q, ax4: q ∧ s→ p (1)

It is easy to see that Γ ∈ P . Note that Definition 1 also captures the following
variation of the above example, where I′ consist of tuples (p, T1) ∈ I ×Pfin(T)
and the c-property is defined as P ′ := {((p, T1), T2) | T1 ∪T2 |= p}. For example,
if we take the axiomatized input Γ ′ := ((p, {ax3, ax4}), {ax1, ax2}), then Γ ′ ∈ P ′.

Definition 2. Given an axiomatized input Γ = (I, T ) and a c-property P, a
set of axioms S ⊆ T is called a minimal axiom set (MinA) for Γ w.r.t. P if
(I,S) ∈ P and (I,S′) /∈ P for every S′ ⊂ S. Dually, a set of axioms S ⊆ T
is called a maximal non-axiom set (MaNA) for Γ w.r.t. P if (I,S) /∈ P and
(I,S′) ∈ P for every S′ ⊃ S. The set of all MinA (MaNA) for Γ w.r.t. P will
be denoted as MINP(Γ ) (MAXP(Γ )).

Note that the notions of MinA and MaNA are only interesting in the case where
Γ ∈ P . In fact, otherwise the monotonicity property satisfied by P implies that
MINP(Γ ) = ∅ and MAXP(Γ ) = {T }. In the above example, where we have Γ ∈ P ,
it is easy to see that MINP(Γ ) = {{ax1, ax2, ax4}, {ax2, ax3, ax4}}. In the variant
of the example where only subsets of the facts {ax1, ax2} can be taken, we have
MINP′(Γ ′) = {{ax2}}.

The set MAXP(Γ ) can be obtained from MINP(Γ ) by computing the minimal
hitting sets of MINP(Γ ), and then complementing these sets [22, 16]. A set S ⊆
T is a minimal hitting set of MINP(Γ ) if it has a nonempty intersection with
every element of MINP(Γ ), and no strict subset of S has this property. In our
example, the minimal hitting sets of MINP(Γ ) are {ax1, ax3}, {ax2}, {ax4}, and
thus MAXP(Γ ) = {{ax2, ax4}, {ax1, ax3, ax4}, {ax1, ax2, ax3}}. Intuitively, to
get a set of axioms that does not have the consequence, we must remove from
T at least one axiom for every MinA, and thus the minimal hitting sets give us
the minimal sets to be removed.

The reduction we have just sketched shows that it is enough to design an
algorithm for computing all MinA, since the MaNA can then be obtained by a



Axiom Pinpointing in General Tableaux 15

hitting set computation. It should be noted, however, that this reduction is not
polynomial: there may be exponentially many hitting sets of a given collection of
sets, and even deciding whether such a collection has a hitting set of cardinality
≤ n is an NP-complete problem [9]. Also note that there is a similar reduction
involving hitting sets for computing the MinA from all MaNA.

Instead of computing MinA or MaNA, one can also compute the pinpointing
formula.4 To define the pinpointing formula, we assume that every axiom t ∈ T
is labeled with a unique propositional variable, lab(t). Let lab(T ) be the set of
all propositional variables labeling an axiom in T . A monotone Boolean formula
over lab(T ) is a Boolean formula using (some of) the variables in lab(T ) and only
the connectives conjunction and disjunction. As usual, we identify a propositional
valuation with the set of propositional variables it makes true. For a valuation
V ⊆ lab(T ), let TV := {t ∈ T | lab(t) ∈ V}.

Definition 3 (pinpointing formula). Given a c-property P and an axiom-
atized input Γ = (I, T ), a monotone Boolean formula φ over lab(T ) is called
a pinpointing formula for P and Γ if the following holds for every valuation
V ⊆ lab(T ): (I, TV ) ∈ P iff V satisfies φ.

In our example, we can take lab(T ) = {ax1, . . . , ax4} as set of propositional
variables. It is easy to see that (ax1 ∨ ax3) ∧ ax2 ∧ ax4 is a pinpointing formula
for P and Γ .

Valuations can be ordered by set inclusion. The following is an immediate
consequence of the definition of a pinpointing formula [4].

Lemma 1. Let P be a c-property, Γ = (I, T ) an axiomatized input, and φ a
pinpointing formula for P and Γ . Then

MINP(Γ ) = {TV | V is a minimal valuation satisfying φ}
MAXP(Γ ) = {TV | V is a maximal valuation falsifying φ}

This shows that it is enough to design an algorithm for computing a pinpointing
formula to obtain all MinA and MaNA. However, like the previous reduction
from computing MaNA from MinA, the reduction suggested by the lemma is
not polynomial. For example, to obtain MINP(Γ ) from φ, one can bring φ into
disjunctive normal form and then remove disjuncts implying other disjuncts. It
is well-known that this can cause an exponential blowup. Conversely, however,
the set MINP(Γ ) can directly be translated into the pinpointing formula

∨

S∈MINP(Γ )

∧

s∈S
lab(s).

In our example, the pinpointing formula obtained from the set MINP(Γ ) =
{{ax1, ax2, ax4}, {ax2, ax3, ax4}} is (ax1 ∧ ax2 ∧ ax4) ∨ (ax2 ∧ ax3 ∧ ax4).

4 This corresponds to the clash formula introduced in [4]. Here, we distinguish between
the pinpointing formula, which can be defined independently of a tableau algorithm,
and the clash formula, which is induced by a run of a tableau algorithm.



16 F. Baader and R. Peñaloza

3 A General Notion of Tableaux

Before introducing our general notion of a tableau-based decision procedure,
we want to motivate it by first modelling a simple decision procedure for the
property P introduced in the Horn clause example from the previous section, and
then sketching extensions to the model that are needed to treat more complex
tableau-based decision procedures.

Motivating Examples

To decide whether (p, T ) ∈ P , we start with the set A := {¬p}, and then use
the rule

If {p1, . . . , pn} ⊆ A and p1 ∧ . . . ∧ pn → q ∈ T then A := A ∪ {q} (2)

to extend A until it is saturated, i.e., it can no longer be extended with the
above rule. It is easy to see that (p, T ) ∈ P (i.e., T |= p) iff this saturated set
contains both p and ¬p. For example, for the axioms in (1), one can first add s
using ax2, then q using ax3, and finally p using ax4. This yields the saturated
set {¬p, p, q, s}.

Abstracting from particularities, we can say that we have an algorithm that
works on a set of assertions (in the example, assertions are propositional vari-
ables and their negation), and uses rules to extend this set. A rule is of the form
(B0,S) → B1 where B0, B1 are finite sets of assertions, and S is a finite set of
axioms (in the example, axioms are Horn clauses). Given a set of axioms T and
a set of assertions A, this rule is applicable if B0 ⊆ A, S ⊆ T , and B1 �⊆ A. Its
application then extends A to A∪B1.5 Our simple Horn clause algorithm always
terminates in the sense that any sequence of rule applications is finite (since only
right-hand sides of implications in T can be added). After termination, we have
a saturated set of assertions, i.e., one to which no rule applies. The algorithm
accepts the input (i.e., says that it belongs to P) iff this saturated set contains
a clash (in the example, this is the presence of p and ¬p in the saturated set).

The model of a tableau-based decision procedure introduced until now is too
simplistic since it does not capture two important phenomena that can be found
in tableau algorithms for description and modal logics: non-determinism and
assertions with an internal structure. Regarding non-determinism, assume that
instead of Horn clauses we have more general implications of the form p1 ∧ . . .∧
pn → q1∨. . .∨qm in T . Then, if {p1, . . . , pn} ⊆ A, we need to choose (don’t know
non-deterministically) with which of the propositional variables qj to extend A.
In our formal model, the right-hand side of a non-deterministic rule consists
of a finite set of sets of assertions rather than a single set of assertions, i.e.,
non-deterministic rules are of the more general form (B0,S) → {B1, . . . , Bm}
where B0, B1, . . . , Bm are finite sets of assertions and S is a finite set of axioms.
Instead of working on a single set of assertions, the non-deterministic algorithm

5 The applicability condition B1 �⊆ A ensures that rule application really extends the
given set of assertions.



Axiom Pinpointing in General Tableaux 17

thus works on a finite set M of sets of assertions. The non-deterministic rule
(B0,S) → {B1, . . . , Bm} is applicable to A ∈ M if B0 ⊆ A and S ⊆ T , and its
application replacesA ∈M by the finitely many sets A∪B1, . . . , A∪Bm provided
that each of these sets really extends A. For example, if we replace ax1 and ax2

in (1) by ax5: → p∨s, then starting with {{¬p}}, we first get {{¬p, p}, {¬p, s}}
using ax5, then {{¬p, p}, {¬p, s, q}} using ax3, and finally {{¬p, p}, {¬p, s, q, p}}
using ax4. Since each of these sets contains a clash, the input is accepted.

Regarding the structure of assertions, in general it is not enough to use propo-
sitional variables. Tableau-based decision procedures in description and modal
logic try to build finite models, and thus assertions must be able to describe the
relational structure of such models. For example, assertions in tableau algorithms
for description logics [6] are of the form r(a, b) and C(a), where r is a role name,
C is a concept description, and a, b are individual names. Again abstracting from
particularities, a structured assertion is thus of the form P (a1, . . . , ak) where P
is a k-ary predicate and a1, . . . , ak are constants. As an example of the kind of
rules employed by tableau-based algorithms for description logics, consider the
rule treating existential restrictions:

If {(∃r.C)(x)} ⊆ A then A := A ∪ {r(x, y), C(y)}. (3)

The variables x, y in this rule are place-holders for constants, i.e., to apply the
rule to a set of assertions, we must first replace the variables by appropriate
constants. Note that y occurs only on the right-hand side of the rule. We will
call such a variable a fresh variable. Fresh variables must be replaced by new
constants, i.e., a constant not occurring in the current set of assertions. For
example, let A := {(∃r.C)(a), r(a, b)}. If we apply the substitution σ := {x �→
a, y �→ c} that replaces x by a and y by the new constant c, then the above
rule is applicable with σ since (∃r.C)(a) ∈ A. Its application yields the set of
assertions A′ = A∪{r(a, c), C(c)}. Of course, we do not want the rule to be still
applicable to A′. However, to prevent this it is not enough to require that the
right-hand side (after applying the substitution) is not contained in the current
set of assertions. In fact, this would not prevent us from applying the rule to A′

with another new constant, say c′. For this reason, the applicability condition
for rules needs to check whether the assertions obtained from the right-hand side
by replacing the fresh variables by existing constants yields assertions that are
already contained in the current set of assertions.

The Formal Definition
In the following, V denotes a countably infinite set of variables, andD a countably
infinite set of constants. A signature Σ is a set of predicate symbols, where
each predicate P ∈ Σ is equipped with an arity. A Σ-assertion is of the form
P (a1, . . . , an) where P ∈ Σ is an n-ary predicate and a1, . . . , an ∈ D. Likewise,
a Σ-pattern is of the form P (x1, . . . , xn) where P ∈ Σ is an n-ary predicate
and x1, . . . , xn ∈ V . If the signature is clear from the context, we will often just
say pattern (assertion). For a set of assertions A (patterns B), cons(A) (var(B))
denotes the set of constants (variables) occurring in A (B).



18 F. Baader and R. Peñaloza

A substitution is a mapping σ : V → D, where V is a finite set of variables.
If B is a set of patterns such that var(B) ⊆ V , then Bσ denotes the set of
assertions obtained from B by replacing each variable by its σ-image. We say
that σ : V → D is a substitution on V . The substitution θ on V ′ extends σ on
V if V ⊆ V ′ and θ(x) = σ(x) for all x ∈ V .

Definition 4 (Tableau). Let I be a set of inputs and T a set of axioms. A
tableau for I and T is a tuple S = (Σ, ·S ,R, C) where

– Σ is a signature;
– ·S is a function that maps every I ∈ I to a finite set of finite sets of Σ-

assertions;
– R is a set of rules of the form (B0,S) → {B1, . . . , Bm} where B0, . . . , Bm

are finite sets of Σ-patterns and S is a finite set of axioms;
– C is a set of finite sets of Σ-patterns, called clashes.

Given a rule R : (B0,S) → {B1, . . . , Bm}, the variable y is a fresh variable in R
if it occurs in one of the sets B1, . . . , Bm, but not in B0.

An S-state is a pair S = (A, T ) where A is a finite set of assertions and T a
finite set of axioms. We extend the function ·S to axiomatized inputs by defining
(I, T )S := {(A, T ) | A ∈ IS}.

Intuitively, on input (I, T ), we start with the initial set M = (I, T )S of S-
states, and then use the rules in R to modify this set. Each rule application picks
an S-state S from M and replaces it by finitely many new S-states S1, . . . ,Sm

that extend the first component of S. If M is saturated, i.e., no more rules are
applicable to M, then we check whether all the elements of M contain a clash.
If yes, then the input is accepted; otherwise, it is rejected.

Definition 5 (rule application, saturated, clash). Given an S-state S =
(A, T ), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0), this
rule is applicable to S with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A, and (iii) for every
i, 1 ≤ i ≤ m, and every substitution ρ′ on var(B0 ∪ Bi) extending ρ we have
Biρ

′ �⊆ A.
Given a set of S-states M and an S-state S = (A, T ) ∈ M to which the

rule R is applicable with substitution ρ, the application of R to S with ρ in M
yields the new set M′ = (M\ {S}) ∪ {(A ∪Biσ, T ) | i = 1, . . . ,m}, where σ is
a substitution on the variables occurring in R that extends ρ and maps the fresh
variables of R to distinct new constants, i.e., constants not occurring in A.

If M′ is obtained from M by the application of R, then we write M→R M′,
or simply M→S M′ if it is not relevant which of the rules of the tableau S was
applied. As usual, the reflexive-transitive closure of →S is denoted by ∗−→S. A set
of S-states M is called saturated if there is no M′ such that M→S M′.

The S-state S = (A, T ) contains a clash if there is a C ∈ C and a substitution
ρ on var(C) such that Cρ ⊆ A, and the set of S-states M is full of clashes if all
its elements contain a clash.

We can now define under what conditions a tableau S is correct for a c-property.



Axiom Pinpointing in General Tableaux 19

Definition 6 (correctness). Let P be a c-property on axiomatized inputs over
I and T, and S a tableau for I and T. Then S is correct for P if the following
holds for every axiomatized input Γ = (I, T ) over I and T:

1. S terminates on Γ , i.e., there is no infinite chain of rule applications M0 →S

M1 →S M2 →S . . . starting with M0 := ΓS.
2. For every chain of rule applications M0 →S . . .→S Mn such thatM0 = ΓS

and Mn is saturated we have Γ ∈ P iff Mn is full of clashes.

The simple decision procedure sketched in our Horn clause example is a cor-
rect tableau in the sense of this definition. More precisely, it is a tableau with
unstructured assertions (i.e., the signature contains only nullary predicate sym-
bols) and deterministic rules. It is easy to see that also the polynomial-time
subsumption algorithm for the DL EL and its extensions introduced in [1] can
be viewed as a correct deterministic tableau with unstructured assertions. The
standard tableau-based decision procedure for concept unsatisfiability in the DL
ALC [23] is a correct tableau that uses structured assertions and has a non-
deterministic rule.

In 2. of Definition 6, we require that the algorithm gives the same answer
independent of what terminating chain of rule applications is considered. Thus,
the choice of which rule to apply next is don’t care non-deterministic in a correct
tableau. This is important since a need for backtracking over these choices would
render a tableau algorithm completely impractical. However, in our framework
this is not really an extra requirement on correct tableaux: it is built into our
definition of rules and clashes.

Proposition 1. Let Γ be an axiomatized input and M0 := ΓS. If M and M′

are saturated sets of S-states such that M0
∗−→S M and M0

∗−→S M′, then M
is full of clashes iff M′ is full of clashes.

4 Pinpointing Extensions of General Tableaux

Given a correct tableau, we show how it can be extended to an algorithm that
computes a pinpointing formula. As shown in Section 2, all minimal axiom sets
(maximal non-axiom sets) can be derived from the pinpointing formula φ by
computing all minimal (maximal) valuations satisfying (falsifying) φ. Recall that,
in the definition of the pinpointing formula, we assume that every axiom t ∈ T is
labeled with a unique propositional variable, lab(t). The set of all propositional
variables labeling an axiom in T is denoted by lab(T ). In the following, we assume
that the symbol �, which always evaluates to true, also belongs to lab(T ). The
pinpointing formula is a monotone Boolean formula over lab(T ), i.e., a Boolean
formula built from lab(T ) using conjunction and disjunction only.

To motivate our pinpointing extension of general tableaux, we first describe
such an extension of the simple decision procedure sketched for our Horn clause
example. The main idea is that assertions are also labeled with monotone Boolean
formulae. In the example, where T consists of the axioms of (1) and the axioma-
tized input is (p, T ), the initial set of assertions consists of ¬p. The label of this



20 F. Baader and R. Peñaloza

initial assertion is � since its presence depends only on the input p, and not on
any of the axioms. By applying the rule (2) using axiom ax2, we can add the
assertion s. Since the addition of this assertion depends on the presence of ax2,
it receives label ax2. Then we can use ax3 to add q. Since this addition depends
on the presence of ax3 and of the assertion s, which has label ax2, the label of
this new assertion is ax2 ∧ ax3. There is, however, also another possibility to
generate the assertion q: apply the rule (2) using axiom ax1. In a “normal” run
of the tableau algorithm, the rule would not be applicable since it would add an
assertion that is already there. However, in the pinpointing extension we need to
register this alternative way of generating q. Therefore, the rule is applicable us-
ing ax1, and its application changes the label of the assertion q from ax2∧ax3 to
ax1∨(ax2∧ax3). Finally, we can use ax4 to add the assertion p. The label of this
assertion is ax4∧ax2∧(ax1∨(ax2∧ax3)) since the application of the rule depends
on the presence of ax4 as well as the assertions s and q. The presence of both p
and ¬p gives us a clash, which receives label �∧ ax4 ∧ ax2 ∧ (ax1 ∨ (ax2 ∧ ax3)).
This so-called clash formula is the output of the extended algorithm. Obviously,
it is equivalent to the pinpointing formula (ax1 ∨ ax3) ∧ ax2 ∧ ax4 that we have
constructed by hand in Section 2.

The Formal Definition
Given a tableau S = (Σ, ·S ,R, C) that is correct for the c-property P , we show
how the algorithm for deciding P induced by S can be modified to an algorithm
that computes a pinpointing formula for P . Given an axiomatized input Γ =
(I, T ), the modified algorithm also works on sets of S-states, but now every
assertion a occurring in the assertion component of an S-state is equipped with
a label lab(a), which is a monotone Boolean formula over lab(T ). We call such S-
states labeled S-states. In the initial set of S-statesM = (I, T )S , every assertion
is labeled with �.

The definition of rule application must take the labels of assertions and axioms
into account. Let A be a set of labeled assertions and ψ a monotone Boolean
formula. We say that the assertion a is ψ-insertable into A if (i) either a /∈ A,
or (ii) a ∈ A, but ψ �|= lab(a). Given a set B of assertions and a set A of
labeled assertions, the set of ψ-insertable elements of B into A is defined as
insψ(B,A) := {b ∈ B | b is ψ-insertable into A}. By ψ-inserting these insertable
elements into A, we obtain the following new set of labeled assertions: A�ψB :=
A∪ insψ(B,A), where each assertion a ∈ A\ insψ(B,A) keeps its old label lab(a),
each assertion in insψ(B,A)\A gets label ψ, and each assertion b ∈ A∩insψ(B,A)
gets the new label ψ ∨ lab(b).

Definition 7 (pinpointing rule application). Given a labeled S-state S =
(A, T ), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0),
this rule is pinpointing applicable to S with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A, and
(iii) for every i, 1 ≤ i ≤ m, and every substitution ρ′ on var(B0 ∪Bi) extending
ρ we have insψ(Biρ

′, A) �= ∅, where ψ :=
∧

b∈B0
lab(bρ) ∧

∧
s∈S lab(s).

Given a set of labeled S-states M and a labeled S-state S ∈ M to which the
rule R is pinpointing applicable with substitution ρ, the pinpointing application



Axiom Pinpointing in General Tableaux 21

of R to S with ρ in M yields the new set M′ = (M\ {S}) ∪ {(A �ψ Biσ, T ) |
i = 1, . . . ,m}, where the formula ψ is defined as above and σ is a substitution
on the variables occurring in R that extends ρ and maps the fresh variables of R
to distinct new constants.

If M′ is obtained from M by the pinpointing application of R, then we write
M→Rpin M′, or simply M→Spin M′ if it is not relevant which of the rules of
the tableau S was applied. As before, the reflexive-transitive closure of →Spin is
denoted by ∗−→Spin . A set of labeled S-states M is called pinpointing saturated if
there is no M′ such that M→Spin M′.

To illustrate the definition of rule application, let us look back at the example
from the beginning of this section. There, we have looked at a situation where
the current set of assertions is A := {¬p, s, q} where lab(¬p) = �, lab(s) = ax2,
and lab(q) = ax2 ∧ ax3. In this situation, the rule (1) is pinpointing applicable
using ax1. In fact, in this case the formula ψ is simply ax1. Since this formula
does not imply lab(q) = ax2 ∧ ax3, the assertion q is ψ-insertable into A. Its
insertion changes the label of q to ax1 ∨ (ax2 ∧ ax3).

Consider a chain of pinpointing rule applications M0 →Spin . . . →Spin Mn

such that M0 = ΓS for an axiomatized input Γ and Mn is pinpointing satu-
rated. The label of an assertion in Mn expresses which axioms are needed to
obtain this assertion. A clash in an S-state of Mn depends on the joint presence
of certain assertions. Thus, we define the label of the clash as the conjunction of
the labels of these assertions. Since it is enough to have just one clash per S-state
S, the labels of different clashes in S are combined disjunctively. Finally, since
we need a clash in every S-state of Mn, the formulae obtained from the single
S-states are again conjoined.

Definition 8 (clash set, clash formula). Let S = (A, T ) be a labeled S-
state and A′ ⊆ A. Then A′ is a clash set in S if there is a clash C ∈ C and
a substitution ρ on var(C) such that A′ = Cρ. The label of this clash set is
ψA′ :=

∧
a∈A′ lab(a).

Let M = {S1, . . . ,Sn} be a set of labeled S-states. The clash formula induced
by M is defined as

ψM :=
n∧

i=1

∨

A′ clash set in Si

ψA′ .

Recall that, given a set T of labeled axioms, a propositional valuation V induces
the subset TV := {t ∈ T | lab(t) ∈ V} of T . Similarly, for a set A of labeled
assertions, the valuation V induces the subset AV := {a ∈ A | V satisfies lab(a)}.
Given a labeled S-state S = (A, T ) we define its V-projection as V(S) :=
(AV , TV). The notion of a projection is extended to sets of S-states M in the
obvious way: V(M) := {V(S) | S ∈ M}. The following lemma is an easy
consequence of the definition of the clash formula:

Lemma 2. Let M be a finite set of labeled S-states and V a propositional val-
uation. Then we have that V satisfies ψM iff V(M) is full of clashes.



22 F. Baader and R. Peñaloza

There is also a close connection between pinpointing saturatedness of a set of
labeled S-states and saturatedness of its projection:

Lemma 3. Let M be a finite set of labeled S-states and V a propositional val-
uation. If M is pinpointing saturated, then V(M) is saturated.

Given a tableau that is correct for a property P , its pinpointing extension is
correct in the sense that the clash formula induced by the pinpointing saturated
set computed by a terminating chain of pinpointing rule applications is indeed
a pinpointing formula for P and the input.

Theorem 1 (correctness of pinpointing). Let P be a c-property on axiom-
atized inputs over I and T, and S a correct tableau for P. Then the following
holds for every axiomatized input Γ = (I, T ) over I and T:

For every chain of rule applications M0 →Spin . . .→Spin Mn such that
M0 = ΓS and Mn is pinpointing saturated, the clash formula ψMn

induced by Mn is a pinpointing formula for P and Γ .

To prove this theorem, we want to consider projections of chains of pinpointing
rule applications to chains of “normal” rule applications. Unfortunately, things
are not as simple as one might hope for since in general M →Spin M′ does
not imply V(M)→S V(M′). First, the assertions and axioms to which the pin-
pointing rule was applied in M may not be present in the projection V(M)
since V does not satisfy their labels. Thus, we may also have V(M) = V(M′).
Second, a pinpointing application of a rule may change the projection (i.e.,
V(M) �= V(M′)), although this change does not correspond to a normal ap-
plication of this rule to V(M). For example, consider the tableau rule (3) treat-
ing existential restrictions in description logics, and assume that we have the
assertions (∃r.C)(a) with label ax1 and r(a, b), C(b) with label ax2. Then the
rule (3) is pinpointing applicable, and its application adds the new assertions
r(a, c), C(c) with label ax1, where c is a new constant. If V is a valuation that
makes ax1 and ax2 true, then the V projection of our set of assertions contains
(∃r.C)(a), r(a, b), C(b). Thus rule (3) is not applicable, and no new individual
c is introduced. To overcome this second problem, we define a modified version
of rule application, where the applicability condition (iii) from Definition 5 is
removed.

Definition 9 (modified rule application). Given an S-state S = (A, T ), a
rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0), this rule is
m-applicable to S with ρ if (i) S ⊆ T and (ii) B0ρ ⊆ A. In this case, we write
M→Sm M′ if S ∈ M and M′ = (M\ {S}) ∪ {(A ∪ Biσ, T ) | i = 1, . . . ,m},
where σ is a substitution on the variables occurring in R that extends ρ and maps
the fresh variables of R to distinct new constants.

The next lemma relates modified rule application with “normal” rule application,
on the one hand, and pinpointing rule application on the other hand. Note that
“saturated” in the formulation of the first part of the lemma means saturated
w.r.t. →S , as introduced in Definition 5.



Axiom Pinpointing in General Tableaux 23

Lemma 4. Let Γ = (I, T ) be an axiomatized input and M0 = ΓS.

1. Assume that M0
∗−→S M and M0

∗−→Sm M′ and that M and M′ are sat-
urated finite sets of S-states. Then M is full of clashes iff M′ is full of
clashes.

2. Assume that M and M′ are finite sets of labeled S-states, and that V is
a propositional valuation. Then M →Spin M′ implies V(M) →Sm V(M′)
or V(M) = V(M′). In particular, this shows that M0

∗−→Spin M implies
V(M0)

∗−→Sm V(M).

We are now ready to prove Theorem 1. Let Γ = (I, T ) be an axiomatized input,
and assume that M0 →Spin . . . →Spin Mn such that M0 = ΓS and Mn is
pinpointing saturated. We must show that the clash formula ψ := ψMn is a
pinpointing formula for the property P . This is an immediate consequence of
the next two lemmas.

Lemma 5. If (I, TV ) ∈ P then V satisfies ψ.

Proof. Let N0 := (I, TV )S . Since S terminates on every input, there is a satu-
rated set N such that N0

∗−→S N . Since S is correct for P and (I, TV ) ∈ P , we
know that N is full of clashes.

By 2. of Lemma 4, M0
∗−→Spin Mn implies V(M0)

∗−→Sm V(Mn). In addition,
we know that V(M0) = N0, and Lemma 3 implies that V(Mn) is saturated.
Thus, 1. of Lemma 4, together with the fact that N is full of clashes, implies
that V(Mn) is full of clashes.

By Lemma 2, this implies that V satisfies ψ = ψMn . ��

Lemma 6. If V satisfies ψ then (I, TV ) ∈ P.

Proof. Consider again a chain of rule applications N0 = (I, TV)S ∗−→S N where
N is saturated. We have (I, TV) ∈ P if we can show that N is full of clashes.

As in the proof of the previous lemma, we have that V(M0)
∗−→Sm V(Mn),

V(M0) = N0, and V(Mn) is saturated. Since V satisfies ψ, Lemma 2 implies
that V(Mn) is full of clashes.

By 1. of Lemma 4, this implies that N is full of clashes. ��

This completes the proof of Theorem 1. The theorem considers a terminating
chain of pinpointing rule applications. Unfortunately, termination of a tableau
S in general does not imply termination of its pinpointing extension. The reason
is that a rule may be pinpointing applicable in cases where it is not applicable
in the normal sense (see the discussion above Definition 9).

Example 1. Consider the tableau S that has the following three rules

R1 : ({P (x)}, {ax1})→ {{P ′(x), Q1(x)}},
R2 : ({P (x)}, {ax2})→ {{P ′(x), Q2(x)}},
R3 : ({P ′(x)}, ∅)→ {{r(x, y), P ′(y)}, {Q1(x)}, {Q2(x)}},



24 F. Baader and R. Peñaloza

and where the function ·S maps every input I ∈ I to the singleton set {{P (a)}},
and the set of axioms is T = {ax1, ax2}.

For any axiomatized input Γ = (I, T ), we have ΓS = {({P (a)}, T )}, and
thus R3 is not applicable to ΓS . Depending on which axioms are contained in T ,
the rules R1 and/or R2 may be applicable. However, their application introduces
Q1(a) or Q2(a) into the set of assertions, and thus the non-deterministic and
potentially non-terminating rule R3 is not applicable. Consequently, S terminates
on every axiomatized input Γ .

It is possible, however, to construct an infinite chain of pinpointing rule ap-
plications starting with ΓS = {({P (a)}, {ax1, ax2})} where lab(P (a)) = �. In
fact, we can first apply the rule R1. This adds the assertions P ′(a) and Q1(a),
both with label ax1. An application of the rule R2 adds the assertion Q2(a)
with label ax2, and it modifies the label of the assertion P ′(a) to lab(P ′(a)) =
ax1 ∨ ax2. At this point, we have reached an S-state S containing the asser-
tions P (a), P ′(a), Q1(a), Q2(a) with labels lab(P (a)) = �, lab(P ′(a)) = ax1 ∨
ax2, lab(Q1(a)) = ax1, and lab(Q2(a)) = ax2. The rule R3 is pinpointing applica-
ble to this S-state. Indeed, although both Q1(a) and Q2(a) are contained in the
assertion set of S, their labels are not implied by lab(P ′(a)). The application of
R3 to S replaces S by three new S-states. One of these new S-states contains
the assertion P ′(b) for a new constant b. Thus, R3 is again applicable to this
S-state, generating a new S-state with an assertion P ′(c) for a new constant
c, etc. It is easy to see that this leads to an infinite chain of pinpointing rule
applications.

The example shows that, to ensure termination of the pinpointing extension of a
tableau, termination of this tableau on every axiomatized input is not sufficient.
From the example one also gets the intuition that the reason why the tableau
terminates, but its pinpointing extensions does not, is related to the applicability
condition for non-deterministic rules. In fact, this condition ensures that the
rule R3, which causes non-termination, cannot be applied. The reason is that
the assertion P ′(a) can only be generated together with Q1(a) or Q2(a). Once
Qi(a) for i ∈ {1, 2} is present, the definition of rule appication prevents R3 from
being applied. In the pinpointing case, this is no longer true since the labels
must be taken into account, and thus the pure presence of Qi(a) is not sufficient
to prevent the application of R3.

Unfortunately, non-deterministic rules are not the only culprit that prevent
transfer of termination. The following example introduces a terminating tableau
with purely deterministic rules whose pinpointing extension is non-terminating.

Example 2. Consider the tableau S that has the following three rules

R1 : ({P (x)}, {ax1})→ R,

R2 : ({P (x)}, {ax2})→ R,

R3 : ({Q1(x), Q2(y)}, ∅)→ {{r(x, y, z), Q1(y), Q2(z)}},

with R = {Q1(x), Q1(y), Q2(x), Q2(y), r(x, x, x), r(x, y, x), r(y, x, x), r(y, y, x)},
and where the function ·S maps every input I ∈ I to the singleton set {{P (a)}},



Axiom Pinpointing in General Tableaux 25

and the set of axioms is T = {ax1, ax2}. For any axiomatized input Γ = (I, T ),
we have ΓS = {({P (a)}, T )}. Depending on which axioms are contained in T ,
the rules R1 and/or R2 may be applicable, but R3 is not. Notice that R1 and
R2 have the same right-hand side, and thus application of R1 or R2 to ΓS leads
to the same S-state, modulo the chosen new constant introduced for the fresh
variable y. Suppose we apply one of these two rules, introducing b as the new
constant. Then the resulting S-state is be given by S = (A, T ) where

A = {P (a), Q1(a), Q1(b), Q2(a), Q2(b), r(a, a, a), r(a, b, a), r(b, a, a), r(b, b, a)}.

No rule is applicable to S. In fact, in order to apply rule R1 or R2, the only way
to satisfy Condition (ii) in the definition of rule application is to use a valuation
that maps x to the constant a. Extending this valuation to map y to a as well
violates Condition (iii) of the definition of rule application since the assertions
Q1(a), Q2(a) and r(a, a, a) were already introduced by the first rule application.
To satisfy Condition (ii) for rule R3, we must choose a valuation ρ mapping x
to a or b and y to a or b. In any case, the assertions r(ρ(x), ρ(y), a), Q1(ρ(x))
and Q2(a) belong to A, and thus extending ρ by mapping z to a violates Con-
dition (iii). This shows that S indeed terminates on every axiomatized input.

It is possible to construct an infinite chain of pinpointing rule applications
starting with ΓS = {({P (a)}, {ax1, ax2})} where lab(P (a)) = �. We can first
apply rule R1 leading to the S-state S described above, where all the assertions,
except P (a) are labeled with ax1. Rule R2 is pinpointing applicable to S since,
although there is an extension of the valuation such that all the assertions exist
already in S, these assertions are labeled with the formula ax1, which is not
implied by ax2. The pinpointing application of R2 to S adds the assertions
Q1(c), Q2(c), r(a, c, a), r(c, a, a), r(c, c, a) with label ax2, and modifies the label
of Q1(a), Q2(a), r(a, a, a) to ax1 ∨ ax2. We can now apply R3 to the resulting S-
state S′ with the valuation ρ mapping x and y to b and c, respectively. Since the
S-state S′ does not contain any assertion of the form r(b, c, ), Condition (iii) is
not violated anymore. This rule application adds the assertions r(b, c, d), Q2(d)
with label ax1 ∧ ax2. It is easy to see that the rule R3 can now be repeatedly
applied, producing an infinite chain of pinpointing rule applications.

5 Conclusion

We have introduced a general notion of tableaux, and have shown that tableaux
that are correct for a consequence property can be extended such that a ter-
minating run of the extended procedure computes a pinpointing formula. This
formula can then be used to derive minimal axiom sets and maximal non-axiom
sets from it.

We have also shown that, in general, termination of a tableau does not imply
termination of its pinpointing extension, even if all tableau rules are determin-
istic. The most important topic for future research is to address the termination
issue: under what additional conditions does termination of a tableau transfer
to its pinpointing extension?



26 F. Baader and R. Peñaloza

In addition, our current framework has two restrictions that we will try to
overcome in future work. First, our tableau rules always extend the current set
of assertions. We do not allow for rules that can modify existing assertions. Thus,
tableau-based algorithms that identify constants, like the rule treating at-most
number restrictions in description logics (see, e.g., [6]), cannot be modelled. A
similar problem occurs for the tableau systems introduced in [3]. There, it was
solved by modifying the definition of rule application by allowing rules that intro-
duce new individuals (in our notation: rules with fresh variables) to reuse existing
individuals. However, this makes such rules intrinsically non-deterministic. In our
setting, we believe that we can solve this problem more elegantly by introducing
equality and inequality predicates.

Second, our approach currently assumes that a correct tableau always ter-
minates, without considering additional blocking conditions. As shown in [17],
extending a tableau with blocking to a pinpointing algorithm requires some ad-
ditional effort. Solving this for the case of general tableaux will be a second
important direction for future research.

References

[1] Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI 2005,
pp. 364–369. Morgan Kaufmann, Los Altos (2005)

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

[3] Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for de-
scription logics. Fundamenta Informaticae 57(2–4), 247–279 (2003)

[4] Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. of Automated Reasoning 14, 149–180 (1995)

[5] Baader, F., Penaloza, R.: Axiom pinpointing in general tableaux. LTCS-Report
07-01, TU Dresden, Germany, (2007) See http://lat.inf.tu-dresden.de/
research/reports.html

[6] Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69, 5–40 (2001)

[7] Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) Practi-
cal Aspects of Declarative Languages. LNCS, vol. 3350, pp. 174–186. Springer,
Heidelberg (2005)

[8] Davydov, G., Davydova, I., Büning, H.K.: An efficient algorithm for the minimal
unsatisfiability problem for a subclass of CNF. Ann. of Mathematics and Artificial
Intelligence 23(3–4), 229–245 (1998)

[9] Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (CA, USA) (1979)

[10] Haarslev, V., Möller, R.: RACER system description. In: Proc. of IJCAR 2001
(2001)

[11] Hollunder, B.: Hybrid inferences in KL-ONE-based knowledge representation sys-
tems. In: Proc. of German Workshop on AI, pp. 38–47. Springer, Heidelberg (1990)

[12] Horrocks, I.: Using an expressive description logic: FaCT or fiction. In: Proc. of
KR’98, pp. 636–647 (1998)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html


Axiom Pinpointing in General Tableaux 27

[13] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26
(2003)

[14] Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., Hendler, J.: Swoop: A Web
ontology editing browser. J. of Web Semantics, 4(2) (2005)

[15] Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL
plugin: An open development environment for semantic web applications. In: Pro-
ceedings of the Third Int. Semantic Web Conf. Hiroshima, Japan (2004)

[16] Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformu-
las. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186.
Springer, Heidelberg (2005)

[17] Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: Proc. of AAAI 2006. AAAI Press/The MIT
Press (2006)

[18] Oberle, D., Volz, R., Motik, B., Staab, S.: An extensible ontology software envi-
ronment. In: Handbook on Ontologies, International Handbooks on Information
Systems, pp. 311–333. Springer, Heidelberg (2004)

[19] Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proc. of
WWW’05, pp. 633–640. ACM, New York (2005)

[20] Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

[21] Schlobach, S.: Diagnosing terminologies. In: Proc. of AAAI 2005, AAAI Press/The
MIT Press, pp. 670–675 (2005)

[22] Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging
of description logic terminologies. In: Proc. of IJCAI 2003, Acapulco, Mexico,
pp. 355–362. Morgan Kaufmann, Los Altos (2003)

[23] Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

[24] Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of DL 2004,
pp. 212–213 (2004)

[25] Spackman, K.A., Campbell, K.E., Cote, R.A.: SNOMED RT: A reference ter-
minology for health care. J. of the American Medical Informatics Association,
pp. 640–644, Fall Symposium Supplement (1997)

[26] Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In: Proc. of
DATE’03, pp. 10880–10885. IEEE Computer Society Press, Washington (2003)



Proof Theory for First Order Łukasiewicz Logic

Matthias Baaz1 and George Metcalfe2

1 Institute of Discrete Mathematics and Geometry, Technical University Vienna,
Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria

baaz@logic.at
2 Department of Mathematics, Vanderbilt University
1326 Stevenson Center, Nashville TN 37240, USA
george.metcalfe@vanderbilt.edu

Abstract. An approximate Herbrand theorem is proved and used to establish
Skolemization for first-order Łukasiewicz logic. Proof systems are then defined
in the framework of hypersequents. In particular, extending a hypersequent calcu-
lus for propositional Łukasiewicz logic with usual Gentzen quantifier rules gives
a calculus that is complete with respect to interpretations in safe MV-algebras,
but lacks cut-elimination. Adding an infinitary rule to the cut-free version of this
calculus gives a system that is complete for the full logic. Finally, a cut-free cal-
culus with finitary rules is obtained for the one-variable fragment by relaxing the
eigenvariable condition for quantifier rules.

1 Introduction

The infinite-valued Łukasiewicz logic Ł, introduced for philosophical reasons by Jan
Łukasiewicz in [12], is among the most important and widely studied of all non-
classical logics. Along with Gödel logic and Product logic, it is viewed as one of the
fundamental “t-norm based” fuzzy logics (see [8] for details). It is also the logic char-
acterized by the class of MV-algebras (for an in-depth treatment see the book [7]) and,
via McNaughton’s theorem [14], “piecewise continuous” linear functions on [0, 1]. For
a good historical overview of the main developments and results for Łukasiewicz and
related many-valued logics consult [13].

Given the pre-eminence of Ł in Fuzzy Logic and other non-classical contexts, it is
perhaps disappointing that there is relatively little understanding of its first-order coun-
terpart ∀Ł. This is partly due to the fact that the valid formulas of ∀Ł are not recursively
enumerable, a result first obtained by Scarpellini [22] and later sharpened by Ragaz to
Π2-completeness [20]. On the other hand, axiomatizations of ∀Ł with infinitary rules
have been given by Hay [10], Belluce and Chang [5,4] (see also Mostowski [16]), and
Hájek [8]. Various fragments of ∀Ł have also been investigated. Validity and satisfia-
bility in the one-variable fragment was proved to be decidable by Rutledge [21], while
satisfiability for the monadic fragment was shown to be Π1-complete by Ragaz [20];
the complexity of validity for this fragment being an open problem. Validity for the
fragment given by safe MV-algebras is Σ1-complete [5]. Also of interest is a decidable
“fuzzy description logic” fragment of ∀Ł investigated by Hájek in [9].

The aim of this paper is to make a preliminary proof-theoretic investigation of first-
order Łukasiewicz logic ∀Ł, the grander purpose being to understand something more

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 28–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Proof Theory for First Order Łukasiewicz Logic 29

about this logic by considering it from an algorithmic perspective. To this end, we be-
gin by giving a simple proof (a more complicated proof is given by Novak in [19])
of the fact that while the usual Herbrand theorem does not hold for ∀Ł, an “approxi-
mate Herbrand theorem” can be obtained: essentially, Herbrand disjunctions exist for
successive approximations to validity. We then use this result to show that first-order
Łukasiewicz logic admits Skolemization, following the pattern of a similar proof for
first-order Gödel logic given in [2].

We define proof calculi for ∀Ł and its fragments by extending the analytic hyper-
sequent1 calculus GŁ for propositional Łukasiewicz logic introduced in [15]. First we
add hypersequent versions of the usual quantifier rules (as e.g. used for first-order Gödel
logic [3]) to GŁ, obtaining a calculus that with a cut rule is complete with respect to safe
MV-algebras. However, as we show with a suitable counter-example, cut-elimination
does not hold for this calculus. On the other hand, adding an infinitary rule to the cut-
free version of this calculus gives a system that is complete for the full logic. Finally,
a finitary cut-free calculus is obtained for the one-variable fragment by relaxing the
eigenvariable condition for quantifier rules.

2 Łukasiewicz Logic

First Order Łukasiewicz Logic ∀Ł is based here on a usual first-order language with
connectives ∀, ∃,→, a constant⊥, and defined connectives:

¬A =def A→ ⊥ � =def ¬⊥
A⊕B =def ¬A→ B A�B =def ¬(¬A ⊕ ¬B)
A ∨B =def (A→ B)→ B A ∧B =def ¬(¬A ∨ ¬B)

For # ∈ {∧,∨} and a finite multiset of formulas Γ = {A1, . . . , An} we write #Γ or
#n

i=1Ai for A1# . . .#An and let ∧∅ and ∨∅ stand for� and ⊥ respectively.
Interpretations I = (D, vI) for ∀Ł consist of a non-empty domainD and a valuation

vI mapping constants and object variables to elements of D; n-ary function symbols
to functions from Dn into D; and n-ary predicate symbols p to functions from Dn into
[0, 1]. For atomic formulas:

vI(p(t1, . . . , tn)) = vI(p)(vI(t1), . . . , vI(tn))

For a valuation vI , variable x, and element a ∈ D, let vI [x ← a] be the valuation
obtained from vI by changing vI(x) to a. Then vI is extended to all formulas by:

vI(⊥) = 0
vI(A→ B) = min(1, 1− vI(A) + vI(B))
vI(∀xA(x)) = inf{vI [x← a](A(x)) : a ∈ D}
vI(∃xA(x)) = sup{vI [x← a](A(x)) : a ∈ D}

I satisfies a formula A, written I |=Ł A, iff vI(A) = 1, and A is valid in ∀Ł, writ-
ten |=Ł A, iff A is satisfied by all ∀Ł interpretations. Two formulas A and B are
∀Ł-equivalent iff vI(A) = vI(B) for all ∀Ł interpretations vI .

1 Hypersequents are a generalization of Gentzen sequents introduced by Avron [1], consisting
of a multiset (intuitively, a disjunction) of sequents.



30 M. Baaz and G. Metcalfe

It will also be crucial to consider the following notion of “approximate validity” for
� ∈ {>,≥} and c ∈ [0, 1]:

|=�c
Ł A iff vI(A) � c for all interpretations I for ∀Ł.

While the problem of checking validity of formulas in ∀Ł is Π2-complete [20], check-
ing approximate validity when � is > and c is rational is Σ1-complete [5,4]. If the
language is restricted to formulas containing at most one variable, i.e. the one-variable
fragment, then checking validity becomes decidable [21]. For the monadic fragment,
obtained by allowing predicate symbols of arity at most one, satisfiability is Π1-
complete [20] while the complexity of checking validity is an open problem. Finally,
propositional Łukasiewicz logic is known to be decidable, indeed co-NP complete [18].

The definition of validity for ∀Ł given above can be generalized to validity for safe
MV-algebras (see [7] for definitions and a wealth of results). An MV-algebra is an
algebraA = 〈L,⊕,¬, 0〉 such that:

1. 〈L,⊕, 0〉 is a commutative monoid.
2. ¬¬x = x.
3. x⊕ ¬0 = ¬0.
4. ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

where 1 =def ¬0; x → y =def ¬x ⊕ y; x � y =def ¬(¬x ⊕ ¬y); x ∧ y =def

x� (¬x⊕ y); x ∨ y =def (x � ¬y)⊕ y; and x ≤ y iff x ∧ y = y.
An MV-chain is an MV-algebra that is linearly ordered.
An interpretation I for an MV-algebraA = 〈L,⊕,¬, 0〉 is defined as for ∀Ł except

that n-ary predicate symbols p are mapped by vI to functions from Dn into L and vI
is extended to all formulas by:

vI(⊥) = 0

vI(A→ B) =
{
vI(A) → vI(B) if vI(A) and vI(B) are defined
undefined otherwise

vI(∀xA(x)) =
{

inf{vI [x← a](A(x)) : a ∈ D} if the infimum exists
undefined otherwise

vI(∃xA(x)) =
{

sup{vI [x← a](A(x)) : a ∈ D} if the supremum exists
undefined otherwise

I satisfies a formula A iff vI(A) = 1, and A is valid in A iff A is satisfied by all
interpretations for A.
A is called safe if vI(A) is defined for all formulas A and interpretations I.
The following axiom system H∀Ł is given by Hájek in [8] (simplifying previous

axiomatizations of Hay [10] and Belluce and Chang [5,4]) where ∃A =def ¬∀¬A:

(Ł1) A→ (B → A)
(Ł2) (A→ B) → ((B → C) → (A→ C))
(Ł3) ((A→ B) → B)→ ((B → A) → A)
(Ł4) ((A→ ⊥)→ (B → ⊥))→ (B → A)
(∀1) ∀xA(x) → A(t)
(∀2) ∀x(A→ B)→ (A→ ∀xB) where x is not free in A



Proof Theory for First Order Łukasiewicz Logic 31

A A→ B
B

(mp) A
∀xA (gen)

Theorem 1 ([8]). The following are equivalent:

(a) �H∀Ł A
(b) A is valid in all safe MV-algebras.
(c) A is valid in all safe MV-chains.

The connection with validity for ∀Ł is established by the following result:

Theorem 2 ([8]). |=Ł A iff �H∀Ł A⊕ (

n︷ ︸︸ ︷
A� . . .�A) for all 1 ≤ n ∈ N.

Finally, we recall some key elements of the correspondence between MV-algebras and
abelian l-groups (see [17,7] for details).

Lemma 1 ([17,7]). For every MV-algebra A, there exists an abelian l-group G =
〈L,+,−, 0〉 with a strong order unit u, Ξ(A) = (G, u), such that A is isomorphic
to 〈[0, u],⊕,¬, 0〉 where x⊕ y =def u∧ (x+ y) and ¬x =def u−x, and the sups and
infs of A coincide with the corresponding sups and infs of 〈[0, u],⊕,¬, 0〉.

For convenience, we will assume that A just is the algebra 〈[0, u],⊕,¬, 0〉 of Ξ(A) =
(G, u) described in the previous lemma. Also, we will write sums of multisets of ele-
ments x1 + . . .+ xn in (G, u) as

∑
{x1, . . . , xn} where

∑
∅ = 0.

3 An Approximate Herbrand Theorem

We begin by recalling some basic notions relating to Herbrand’s theorem. Let A be a
formula, and let C and F be the constants and function symbols occurring in A respec-
tively, adding a constant if the former is empty. The Herbrand universe U(A) of A is
constructed inductively as follows:

U0(A) = C
Un+1(A) = Un(A) ∪ {f(t1, . . . , tk) : t1, . . . , tk ∈ Un(A) and f ∈ F with arity k}

where U(A) =
⋃∞

n=0 Un(A). The Herbrand base B(A) of a formula A is the set of
atoms constructed from the predicate symbols of A and the terms occurring in the Her-
brand universe U(A). We write Qx̄A(x̄) for a formula Q1x1 . . . QnxnA(x1, . . . , xn)
where Qi ∈ {∀, ∃} for 1 ≤ i ≤ n. As usual a Prenex formula is a formula Qx̄P (x̄)
where P is quantifier-free.

The following useful fact is established easily using admissible quantifier rules:

Theorem 3 ([8]). Any formula of ∀Ł is ∀Ł-equivalent to a Prenex formula of ∀Ł.

We now observe that Herbrand’s Theorem as usually stated does not hold for ∀Ł. First,
clearly |=Ł ∀xA(x) → ∀yA(y). Hence, using admissible quantifier rules for ∀Ł:

|=Ł ∃y∀x(A(x) → A(y))



32 M. Baaz and G. Metcalfe

It follows that:
|=Ł ∃y(A(f(y)) → A(y))

So if Herbrand’s theorem holds for ∀Ł, then for some n (where f0(a) = a):

|=Ł

n∨

i=1

(A(f i(a))→ A(f i−1(a)))

But defining an interpretation I such that:

vI(A(f i(a))) > vI(A(f i−1(a))) for i = 1 . . . n

e.g. where vI(A(f i(a))) = i/n, we obtain a countermodel, so the theorem fails.2

Take another look at the formula
∨n

i=1(A(f i(a)) → A(f i−1(a))), however. Al-
though this is not a tautology of ∀Ł, it comes within “one nth” of being one. That is, we
can show that:

|=>c
Ł

n∨

i=1

(A(f i+1(a))→ A(f i(a)))

for any c < 1−1/n. Hence we can characterize successive “Herbrand approximations”
to ∃y(A(f(y)) → A(y)) that come arbitrarily close to 1. Indeed this is an example of a
more general phenomenon; captured by the following approximate Herbrand theorem
for existential formulas:

Theorem 4. |=Ł ∃x̄P (x̄) where P is quantifier-free iff for all c < 1:

|=>c
Ł

n∨

i=1

P (t̄i) for some t̄1, . . . , t̄n ∈ U(P )

Proof. If |=>c
Ł

∨n
i=1 P (t̄i) for all c < 1, then |=>c

Ł ∃x̄P (x̄) for all c < 1, so clearly
|=Ł ∃x̄P (x̄). For the other direction, fix c < 1. Note that each valuation vI for an
interpretation I may be viewed as a mapping from B(P ) into [0, 1]; i.e. as a member
either of [0, 1]k for some k if B(P ) is finite, or of the Hilbert cube [0, 1]ω if B(P ) is
countably infinite. In either case (the latter using the Tychonoff Theorem), these are
compact spaces with respect to the product topology. Now for each t̄ ∈ U(P ) define:

S(t̄) = {vI ∈ [0, 1]B(P ) : vI(P (t̄)) ≤ c}

Since the connectives of Ł are interpreted by continuous functions on [0, 1], each S(t̄)
is a closed subset of [0, 1]B(P ) with respect to the product topology. We consider:

S = {S(t̄) : t̄ ∈ U(P )}

We have two possibilities:

1. If some {S(t̄1), . . . , S(t̄n)} ⊆ S has an empty intersection, then for every interpre-
tation I, vI(P (t̄i)) > c for some i, 1 ≤ i ≤ n. I.e. |=>c

Ł

∨n
i=1 P (t̄i) as required.

2 In fact this argument holds for a wide class of infinite-valued logics.



Proof Theory for First Order Łukasiewicz Logic 33

2. Otherwise, every finite subset of S has a non-empty intersection. Recall that S is
a collection of closed subsets of [0, 1]B(P ). Hence by the finite intersection prop-
erty for compact spaces, S has a non-empty intersection. There exists vI such that
vI(P (t̄)) ≤ c for all t̄ ∈ U(P ). So vI(∃x̄P (x̄)) ≤ c, a contradiction. ��

We obtain as easy consequences the following decidability results.

Proposition 1. Checking validity for the ∀∃-fragment of ∀Ł without function symbols
is decidable.

Proof. A formula ∀x̄∃ȳP (x̄, ȳ) where P is quantifier and function-symbol free is valid
iff F = ∃ȳP (ū, ȳ) is valid for new constants ū. Let U be the (finite) set of constants
occurring in F . By the approximate Herbrand theorem F is valid iff for every c < 1,
|=>c

Ł

∨n
i=1 P (t̄i) where each t̄i consists only of constants from U . So F is valid iff the

propositional formula
∨
{P (ū) : ū ∈ U} is valid, a decidable problem. ��

Proposition 2. Checking validity for the one-variable fragment of ∀Ł without function
symbols is decidable.

Proof. Any formula in the one-variable fragment of ∀Ł without function symbols is
∀Ł-equivalent to a ∀∃ formula without function symbols, so the result follows by the
previous proposition. ��

4 Skolemization

We will now use the approximate Herbrand theorem in a rather neat way: to obtain
Skolemization for ∀Ł. Recall that the Skolem form ∃x̄AF (x̄) of a Prenex formula
QȳA(ȳ) is obtained by rewriting ∃z̄∀uB(z̄, u) to ∃z̄B(z̄, f(z̄)) where f is a new func-
tion symbol with appropriate arity, as often as possible. Our first step is to show that if
a Herbrand disjunction for the Skolem form of a Prenex formula is approximately≥ c
valid, then the formula is itself valid to the same degree.

Proposition 3. Let ∃x̄AF (x̄) be the Skolem form of QȳA(ȳ). If |=≥c
Ł

∨n
i=1A

F (t̄i),
then |=≥c

Ł QȳA(ȳ).

Proof. We assume that the occurrences of ∀ in QȳA(ȳ) are labelled with the corre-
sponding function symbols of ∃x̄AF (x̄) introduced by Skolemization. We then define a
sequence of sets of formulas as follows. Let S0 = {QȳA(ȳ)}. Now, given Sj let Sj+1

be the smallest set of formulas satisfying:

(1) Sj ⊆ Sj+1.
(2) If ∀xB(x) ∈ Sj+1 and f(t̄) labels ∀, then B(f(t̄)) ∈ Sj+1.
(3) If ∃xB(x) ∈ Sj+1, then B′(s) ∈ Sj+1 for all s ∈ Uj(A) where B′ is B with each

f(t̄) labelling an occurrence of ∀ replaced by f(t̄, s).

Notice that each Sj is finite, since each Uj(A) is finite.
An easy inductive proof shows that for any t̄ ∈ U(A), AF (t̄) ∈ Sk for some k: just

observe that t̄ ∈ Uk(A) for some k and then use (2) for each occurrence of ∀ and (3) for



34 M. Baaz and G. Metcalfe

each occurrence of ∃ to get that AF (t̄) ∈ Sk. But this means that if |=≥c
Ł

∨n
i=1A

F (t̄i),
then |=≥c

Ł

∨
Sm for some large enoughm. Hence to complete our proof it is sufficient

to show that for each j, if |=≥c
Ł

∨
Sj+1, then |=≥c

Ł

∨
Sj . I.e. we have to check that steps

(2) and (3) above are sound in the sense that the approximate validity of the extended
set implies the approximate validity of the original set:

1. If |=≥c
Ł

∨
S ∪ {∀xB(x), B(d)}, then so long as d does not occur in S or B,

|=≥c
Ł

∨
S ∪ {∀xB(x)} as required. But the newness of d is guaranteed by the

fact that each occurrence of ∀ is labelled with a different function symbol f and
the arguments of this function are determined uniquely by the terms chosen for the
preceding occurrences of ∃.

2. If |=≥c
Ł

∨
S ∪ {∃xB(x), B(s)}, then |=≥c

Ł S ∪ {∃xB(x)} for any term s. ��

We can now establish Skolemization for the Prenex fragment of ∀Ł by combining this
last proposition with the approximate Herbrand theorem.

Theorem 5. Let ∃x̄AF (x̄) be the Skolem form of QȳA(ȳ). Then:

|=Ł ∃x̄AF (x̄) iff |=Ł QȳA(ȳ)

Proof. The right-to-left direction follows easily using standard quantifier properties of
∀Ł. For the other direction, suppose that |=Ł ∃x̄AF (x̄). By Theorem 4, for all c < 1,
there exist tuples of terms, t̄1, . . . , t̄n, in U(A) such that |=>c

Ł

∨n
i=1 A

F (t̄i). But then
by Proposition 3, for all c < 1, |=≥c

Ł QȳA(ȳ). Hence |=Ł QȳA(ȳ) as required. ��

Since by Theorem 3, any formula has an equivalent Prenex formula, we obtain:

Corollary 1. Skolemization holds for ∀Ł.

Note that (the easy direction of) Skolemization allows us to extend the approximate
Herbrand theorem to the whole of ∀Ł: we just put the formula into Prenex form, apply
Theorem 5 and then Theorem 4.

Corollary 2. LetA be a formula and let ∃x̄PF (x̄) be the Skolem form of an equivalent
Prenex formula for A. Then |=Ł A iff for all c < 1:

|=>c
Ł

n∨

i=1

PF (t̄i) for some t̄1, . . . , t̄n ∈ U(PF )

5 The Hypersequent Calculus GŁ

We define proof systems for Łukasiewicz logic in the framework of hypersequents;
finite multisets of the form:

Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn

where Γi and Δi are finite multisets of formulas for i = 1 . . . n; i.e. each Γi ⇒ Δi is
an ordinary sequent, called a component of the hypersequent.

Validity is extended to hypersequents as follows:



Proof Theory for First Order Łukasiewicz Logic 35

Definition 1. |=Ł Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn iff for all ∀Ł interpretations I:
∑
{vI(A)− 1 : A ∈ Γi} ≤

∑
{vI(B)− 1 : B ∈ Δi} for some i, 1 ≤ i ≤ n.

More generally, we can define validity for hypersequents for any safe MV-algebra.

Definition 2. Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn is valid in a safe MV-algbera A iff for all
interpretations I for A:
∑
{vI(A)− u : A ∈ Γi} ≤

∑
{vI(B)− u : B ∈ Δi} for some i, 1 ≤ i ≤ n.

in Ξ(A) = (G, u), the abelian l-groupG = 〈L,+,−, 0〉 with order unit u.

These interpretations are certainly not standard. Hypersequents are interpreted using
sums of elements in abelian l-groups rather than as formulas of Ł. In particular, the left
and right comma are not interpreted as the � and ⊕ of an MV-algebra, but “outside
the logic” as the addition + of the corresponding abelian l-group. Nevertheless, for
formulas we still obtain the usual notion of validity for Ł, i.e. we have that a formulaA
is valid iff |=Ł ⇒ A (for propositional formulas, iff �H∀Ł ⇒ A).

The following analytic (i.e. having the subformula property and no cut rule) hyper-
sequent calculus for propositional Łukasiewicz logic was introduced in [15]. As usual,
we write Γ,Π for the multiset union of Γ and Π and Γ,A for the multiset union of Γ
and {A}. We also use G to denote an arbitrary “side-hypersequent” occurring in both
the premises and conclusion of a rule.

Definition 3 (The Hypersequent Calculus GŁ)

Initial Sequents:

A⇒ A
(id) ⇒ (Λ) ⊥ ⇒ A

(⊥⇒)

Structural Rules:

G
G | Γ ⇒ Δ

(ew)
G | Γ ⇒ Δ | Γ ⇒ Δ

G | Γ ⇒ Δ
(ec)

G | Γ ⇒ Δ

G | Γ,A⇒ Δ
(wl)

G | Γ1, Γ2 ⇒ Δ1, Δ2

G | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2
(split)

G | Γ1 ⇒ Δ1 G | Γ2 ⇒ Δ2

G | Γ1, Γ2 ⇒ Δ1, Δ2
(mix)

Logical Rules:

G | Γ,B ⇒ A,Δ

G | Γ,A→ B ⇒ Δ
(→⇒)

G | Γ ⇒ Δ G | Γ,A⇒ B,Δ

G | Γ ⇒ A→ B,Δ
(⇒→)

Rules for defined connectives can also be obtained, e.g.

G | Γ,A⇒ Δ

G | Γ,A ∧B ⇒ Δ
(∧⇒)1

G | Γ,B ⇒ Δ

G | Γ,A ∧B ⇒ Δ
(∧⇒)2

G | Γ,A⇒ Δ G | Γ,B ⇒ Δ

G | Γ,A ∨B ⇒ Δ
(∨⇒)

G | Γ ⇒ A,Δ G | Γ ⇒ B,Δ

G | Γ ⇒ A ∧B,Δ (⇒∧)

G | Γ ⇒ A,Δ

G | Γ ⇒ A ∨B,Δ (⇒∨)1
G | Γ ⇒ B,Δ

G | Γ ⇒ A ∨B,Δ (⇒∨)2



36 M. Baaz and G. Metcalfe

Note moreover that a simpler (“standard”) version of the implication right rule is deriv-
able when only one formula appears on the right:

G | Γ,A⇒ B

G | Γ ⇒ A→ B
(⇒→)1

Example 1. We illustrate this calculus with a derivation of the key axiom (Ł3):

B ⇒ B
(id)

A⇒ A
(id)

B,A⇒ A,B
(mix)

B,B → A⇒ A
(→⇒)

B ⇒ B
(id)

A⇒ A
(id)

B,A⇒ A,B
(mix)

B,B → A,A⇒ A,B
(wl)

B,B → A⇒ A,A→ B
(⇒→)

(A→ B) → B,B → A⇒ A
(→⇒)

(A→ B)→ B ⇒ (B → A) → A
(⇒→)1

⇒ ((A→ B)→ B) → ((B → A)→ A)
(⇒→)1

Observe that hypersequents are not needed to prove this or indeed any of the other
propositional axioms (Ł1)-(Ł4) for Ł; nevertheless, they are essential to prove other
theorems such as A→ (B → ((A→ (A→ C)) → ((B → (B → C)) → C))).

A semantic completeness proof for GŁ was presented in [15].

Theorem 6 ([15]). �GŁ G iff |=Ł G.

It follows from this theorem that the following cut rule and (inter-derivable) cancellation
rule are admissible for GŁ:

G | Γ1, A⇒ Δ1 G | Γ2 ⇒ A,Δ2

G | Γ1, Γ2 ⇒ Δ1, Δ2
(cut)

G | Γ,A⇒ A,Δ

G | Γ ⇒ Δ
(can)

Syntactic eliminations of these rules were given in [6].

Theorem 7 ([6]). Cut-elimination holds for GŁ + (cut) and cancellation-elimination
holds for GŁ + (can).

6 Adding Quantifiers

In this section we consider the effect of adding the obvious “standard quantifier rules”
to GŁ; i.e. adding the rules used for other first-order fuzzy logics such as ∀G [3]: the
hypersequent versions of Gentzen’s rules for LJ and LK.

Definition 4. G∀Ł is GŁ extended with:

G | Γ,A(t) ⇒ Δ

G | Γ, ∀xA(x) ⇒ Δ
(∀⇒)

G | Γ ⇒ A(a), Δ
G | Γ ⇒ ∀xA(x), Δ

(⇒∀)

G | Γ,A(a) ⇒ Δ

G | Γ, ∃xA(x) ⇒ Δ
(∃⇒)

G | Γ ⇒ A(t), Δ
G | Γ ⇒ ∃xA(x), Δ

(⇒∃)

where a does not occur in the conclusion of (⇒∀) or (∃⇒).



Proof Theory for First Order Łukasiewicz Logic 37

Example 2. Consider the following proof in G∀Ł of the axiom (∀2):

B(a)⇒ B(a)
(id)

A⇒ A
(id)

B(a), A⇒ A,B(a)
(mix)

A→ B(a), A⇒ B(a)
(→⇒)

∀x(A→ B), A⇒ B(a)
(∀⇒)

∀x(A→ B), A⇒ ∀xB (⇒∀)

∀x(A→ B) ⇒ A→ ∀xB (⇒→)1

⇒ ∀x(A→ B) → (A→ ∀xB)
(⇒→)1

Notice that it is crucial for this proof that x does not occur free in A, since in that case
A(a) would appear on the left in the second application of (id), with A(x) on the right.

It is easy to check that this system is sound with respect to |=Ł.

Theorem 8. If �G∀Ł G, then |=Ł G.

Proof. By induction on the height of a derivation of G in G∀Ł. Since all other rules
have been checked in [15], we just check that the quantifier rules preserve validity. Also
note that using linearity, we can disregard the side-hypersequent G occurring in both
premises and conclusion. For (⇒∀), suppose that for each interpretation I:

∑

C∈Γ

(vI(C)− 1) ≤ (vI(A(a)) − 1) +
∑

D∈Δ

(vI(D)− 1)

where a does not occur in Γ ,Δ, or A. Since this holds for any a, we have also:
∑

C∈Γ

(vI(C)− 1) ≤ (vI(∀xA(x)) − 1) +
∑

D∈Δ

(vI(D)− 1)

as required. For (∀⇒), suppose that:
∑

C∈Γ

(vI(C)− 1) + (vI(A(t)) − 1) ≤
∑

D∈Δ

(vI(D)− 1)

for some term t, then:
∑

C∈Γ

(vI(C)− 1) + (vI(∀xA(x)) − 1) ≤
∑

D∈Δ

(vI(D)− 1)

The cases of the rules for ∃ are very similar. ��

Moreover, if we extend G∀Ł with (cut) or (can), then we obtain completeness with
respect to the axiomatization H∀Ł, noting that completeness for ∀Ł cannot be possible
for any finitary calculus since the logic is not recursively axiomatizable.

Theorem 9. �H∀Ł A iff �G∀Ł+(cut)⇒ A.

Proof. For the left-to-right direction, we observe that (gen) and (mp) are admissible
for G∀Ł+(cut) using (⇒ ∀) and (cut), respectively. Moreover, it is easy to see that the



38 M. Baaz and G. Metcalfe

axioms (Ł1)-(Ł4) and (∀1)-(∀2) are derivable. For the right-to-left direction, we can
prove the more general claim: if �G∀Ł+(cut) G, then �H∀Ł G, proceeding by induction
on the height of a derivation of G in G∀Ł. We check the soundness of each rule by
restricting to safe MV-chains and recalling that for each safe MV-algebraA and abelian
l-group G with strong unit u such that Ξ(A) = (G, u), we have that A is (isomorphic
to) 〈[0, u],⊕,¬, 0〉 where x⊕ y =def u∧ (x+ y) and ¬x =def u− x. As an example,
consider (→⇒). Suppose that for some interpretation I:

∑

C∈Γ

(vI(C)− u) + (vI(B)− u) ≤
∑

D∈Δ

(vI(D)− u) + (vI(A)− u)

It follows that:
∑

C∈Γ

(vI(C)− u) + ((u− vI(A) + vI(B)) − u) ≤
∑

D∈Δ

(vI(D)− u)

Hence, since also (u − vI(A) + vI(B)) ≤ u, we get:
∑

C∈Γ

(vI(C)− u) + (vI(A→ B)− u) ≤
∑

D∈Δ

(vI(D)− u)

as required. Other cases are similar. ��

However, cut elimination fails for G∀Ł + (cut) and G∀Ł + (can). For example,
∃x∀y(A(x) → A(y)) has the following proof in G∀Ł + (can):

A(a) ⇒ A(a)
(id)

∀zA(z)⇒ A(a)
(∀⇒)

A(a) ⇒ A(a)
(id)

A(b) ⇒ A(b)
(id)

∀zA(z)⇒ A(b)
(∀⇒)

∀zA(z), A(a)⇒ A(b), A(a)
(mix)

∀zA(z)⇒ A(a)→ A(b), A(a)
(⇒→)

∀zA(z)⇒ ∀y(A(a) → A(y)), A(a)
(⇒∀)

∀zA(z)⇒ ∃x∀y(A(x) → A(y)), A(a)
(⇒∃)

∀zA(z)⇒ ∃x∀y(A(x) → A(y)), ∀zA(z)
(⇒∀)

⇒ ∃x∀y(A(x) → A(y))
(can)

But this formula has no proof in G∀Ł.

7 An Infinitary Calculus

To obtain a calculus that is complete for ∀Ł, we need (as in the axiomatizations of Hay
[10], Belluce and Chang [5,4], and Hájek [8]) an infinitary rule. In particular, we can
express our required rule in (hyper)sequent format as:

⇒ A⊕ (

n︷ ︸︸ ︷
A� . . .�A) for all 1 ≤ n ∈ N

⇒ A



Proof Theory for First Order Łukasiewicz Logic 39

Alternatively, writing An for the multiset containing n copies of A, we could use:

⊥ ⇒ An for all 1 ≤ n ∈ N

⇒ A

or introduce rational constants into the language of the form r̄ for each r ∈ [0, 1] ∩ Q

(requiring of course further book-keeping axioms and rules) and use:

1− 1/n⇒ A for all 1 ≤ n ∈ N

⇒ A

To establish the completeness of G∀Ł extended with such rules we proceed in similar
fashion to the proof of Proposition 3, the complicating factors here being the presence
of quantifiers deep within the formula and the use of hypersequent rules to decompose
the formula into sets of hypersequents.

Proposition 4. Let QȳA(ȳ) be a Prenex form of a formula C with Skolem form
∃x̄AF (x̄). If |=Ł

∨n
i=1A

F (t̄i), then �G∀Ł⇒ C.

Proof. Let the sequence Sj of sets of formulas with labelled occurrences be defined
for QȳA(ȳ) exactly as in Proposition 3 and label with the same function symbols the
corresponding occurrences of ∀ and ∃ inC (noting that some occurrences of ∃ are trans-
formed to ∀ while prenexing and vice versa). Now we define sets Hj of hypersequents
that contain only terms from Uj(A) as follows. Let H0 = {⇒ C} and given Hj , let
Hj+1 be the result of applying the following operations toHj as many times as possible
(it is easy to see that this process terminates):

– Replace G | Γ,A→ B ⇒ Δ with G | Γ ⇒ Δ | Γ,B ⇒ A,Δ.
– Replace G | Γ ⇒ A→ B,Δ with G | Γ ⇒ Δ and G | Γ,A⇒ B,Δ.
– If G | Γ ⇒ ∀xB(x), Δ occurs in the set and f(t̄) labels this occurrence of ∀, then

add G | Γ ⇒ B(f(t̄)), Δ.
– If G | Γ, ∀xB(x) ⇒ Δ occurs in the set, then add G | Γ,B′(s) ⇒ Δ for all
s ∈ Uj(A) where B′ is B with each f(t̄) labelling a positive occurrence of ∀ or
negative occurrence of ∃ replaced by f(t̄, s).

– If G | Γ, ∃xB(x) ⇒ Δ occurs in the set and f(t̄) labels this occurrence of ∃, then
add G | Γ,B(f(t̄))⇒ Δ.

– If G | Γ ⇒ ∃xB(x), Δ occurs in the set, then add G | Γ ⇒ B′(s), Δ for all
s ∈ Uj(A) where B′ is B with each f(t̄) labelling a positive occurrence of ∀ or
negative occurrence of ∃ replaced by f(t̄, s).

Observe that using the implication, quantifier, weakening, and external contraction rules
of G∀Ł, we have that for each j, if �G∀Ł G for all G ∈ Hj+1, then �G∀Ł G for all
G ∈ Hj . Hence it is sufficient to show that �G∀Ł G for all G ∈ Hk for some k. To show
this, we define:

prop(X) = {S ∈ X : S contains only propositional formulas}
Recall that each Sj is a set of formulas containing only terms from Uj(A). It fol-
lows from the construction of the two sequences that if |=Ł

∨
prop(Sj), then also



40 M. Baaz and G. Metcalfe

|=Ł prop(G) for each G ∈ Hj . Hence by the completeness of GŁ, prop(G) is derivable
in GŁ from⇒

∨
prop(Sj) for each G ∈ Hj . But now for some k, |=Ł

∨
prop(Sk). It

follows that �GŁ G for each G ∈ Hk as required. ��

Theorem 10. |=Ł A iff �G∀Ł⇒ A⊕ (

n︷ ︸︸ ︷
A� . . .�A) for all 1 ≤ n ∈ N.

Proof. For the right-to-left direction, observe that if �G∀Ł A ⊕ (

n︷ ︸︸ ︷
A� . . .�A) for all

1 ≤ n ∈ N, then in all interpretations I, n−1
n ≤ vI(A), for all 1 ≤ n ∈ N, i.e.

vI(A) = 1 for all interpretations I. For the left-to-right direction suppose that |=Ł A.
Let QȳP (y) be a Prenex form of A and let ∃x̄PF (x̄) be the Skolem form of QȳP (y).
By Theorem 5, |=Ł ∃x̄PF (x̄), so by Theorem 4, for all 1 ≤ n ∈ N:

|=>1−1/n
Ł

m∨

i=1

PF (t̄i) for some t̄1, . . . , ¯tm ∈ U(P )

Hence, reasoning in the standard model, for all 1 ≤ n ∈ N:

|=Ł

m∨

i=1

(PF
1 ⊕ (

n︷ ︸︸ ︷
PF

2 � . . .� PF
n ))(t̄i) for some t̄1, . . . , ¯tm ∈ U(P )

where each PF
j is obtained by replacing each Skolem function f in PF with a dis-

tinguished Skolem function fj . But then by the previous proposition �G∀Ł⇒ A ⊕

(

n︷ ︸︸ ︷
A� . . .�A) for all 1 ≤ n ∈ N as required. ��

This completeness result transfers easily to other systems, e.g.:

Corollary 3. |=Ł A iff⇒ A is derivable in G∀Ł extended with the rule:

⊥ ⇒ nA for all 1 ≤ n ∈ N

⇒ A

Example 3. Consider our earlier problematic formula ∃x∀y(A(x) → A(y)). To prove
this in the above system, we would have to perform an infinite number of derivations in
G∀Ł. E.g in the case where n = 2, we have:

⊥⇒ A(b) → A(c)
(⊥⇒)

⊥⇒ A(b)
(⊥⇒)

⊥⇒ A(c)
(⊥⇒)

A(b) ⇒ A(b)
(id)

⊥, A(b) ⇒ A(b), A(c)
(mix)

⊥⇒ A(b), A(b) → A(c)
(⇒→)

⊥, A(a) ⇒ A(b), A(b) → A(c)
(wl)

⊥⇒ A(a) → A(b), A(b) → A(c)
(⇒→)

⊥⇒ A(a) → A(b),∀y(A(b) → A(y))
(⇒∀)

⊥⇒ A(a) → A(b),∃x∀y(A(x) → A(y))
(⇒∃)

⊥⇒ ∀y(A(a) → A(y)),∃x∀y(A(x) → A(y))
(⇒∀)

⊥⇒ ∃x∀y(A(x) → A(y)),∃x∀y(A(x) → A(y))
(⇒∃)



Proof Theory for First Order Łukasiewicz Logic 41

8 The One Variable Fragment

As established in Section 3, the decidability of the one variable fragment of ∀Ł with-
out function symbols follows from the approximate Herbrand theorem for ∀Ł. Here,
we provide a hypersequent calculus for this fragment by liberalising the eigenvariable
condition for (⇒∀) and (∃⇒): the idea being that we allow for quantifier shifts that
“could have been performed earlier in the proof”.

Definition 5. Let G∀Ł1 be G∀Ł with the eigenvariable condition changed to “a is
either new or removed by (∀⇒) or (⇒∃) at a lower point in the proof”.

The new eigenvariable condition given here is global in the sense that it applies to whole
proofs: indeed the rules are not sound in isolation, only as part of a proof.

Example 4. Consider the following proof of ∃x(A(x) → ∀xA(x)):

A(a) ⇒ A(a)
(id)

A(a) ⇒ ∀xA(x)
(⇒∀)

⇒ A(a) → ∀xA(x)
(⇒→)1

⇒ ∃x(A(x) → ∀xA(x))
(⇒∃)

Notice that the use of the constant a in the application of (⇒∀) is justified by the fact
that a is removed by (⇒∃) two lines down in the proof. In fact, the subproof ending
with A(a) ⇒ ∀xA(x) is not allowed in isolation: rightly so, since the sequent is not
valid for ∀Ł.

Theorem 11. For each one-variable formula A, �G∀Ł1 ⇒ A iff |=Ł A.

Proof. Let A′ be A with all positive occurrences of ∀xB(x) and negative occurrences
of ∃xB(x) replaced by B(a) where a is a new variable in each case. Since A only has
one variable, it follows using admissible quantifier rules for ∀Ł that |=Ł A

′ iff |=Ł A.
For soundness, if �G∀Ł1 ⇒ A, then by an easy induction �G∀Ł ⇒ A′. Hence by the
soundness of G∀Ł, |=Ł A

′ and therefore also |=Ł A.
For completeness, suppose that |=Ł A and let the Prenex form of A′ be ∃x̄P (x̄)

where P is quantifier-free. Since |=Ł ∃x̄P (x̄), by the approximate Herbrand theorem,
|=Ł P1(t̄1) ∨ . . . ∨ Pn(t̄n) for some t̄1, . . . , t̄n. By Theorem 6, �GŁ⇒ P1(t̄1) | . . . |⇒
Pn(t̄n). Hence to prove⇒ Awe apply (ec) upwards n times to obtain the hypersequent
⇒ A | . . . | ⇒ A. We then mimic the proof of⇒ P1(t̄1) | . . . |⇒ Pn(t̄n) making sure
that we choose the corresponding terms when we encounter occurrences of ∀ and ∃. For
(∀⇒) and (⇒∃), this is fine since we can choose terms as we like. The only problem
that can occur is in the rules (⇒∀) and (∃⇒) but the relaxed eigenvariable condition
takes care of this: any variable that we need is either new or removed further down the
proof by (∀⇒) or (⇒∃). ��
Concluding Remark. While the main achievements of this paper are theoretical, the
approximate Herbrand theorem and Skolemization results should be useful in investi-
gating fragments of practical use. In particular, we would like to consider decidable
fragments for fuzzy description logics (as described in e.g. [9,23]) and fuzzy logic pro-
gramming (see e.g. [24]). It is our hope also that our approach will shed some light on
the intriguing problem of the decidability of monadic Łukasiewicz logic.



42 M. Baaz and G. Metcalfe

References

1. Avron, A.: A constructive analysis of RM. Journal of Symbolic Logic 52(4), 939–951 (1987)
2. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s theorem for Prenex Gödel logic and

its consequences for theorem proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001.
LNCS (LNAI), vol. 2250, Springer, Heidelberg (2001)

3. Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In:
Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, Springer, Heidelberg
(2000)

4. Belluce, L.P.: Further results on infinite valued predicate logic. Journal of Symbolic Logic 29,
69–78 (1964)

5. Belluce, L.P., Chang, C.C.: A weak completeness theorem for infinite valued first order logic.
Journal of Symbolic Logic 28, 43–50 (1963)

6. Ciabattoni, A., Metcalfe, G.: Bounded Łukasiewicz logics. In: Mayer, M.C., Pirri, F. (eds.)
TABLEAUX 2003. LNCS, vol. 2796, Springer, Heidelberg (2003)

7. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Rea-
soning, volume 7 of Trends in Logic. Kluwer, Dordrecht (1999)

8. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
9. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets. and Systems 23(2–4),

161–178 (2006)
10. Hay, L.S.: Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic

Logic 28(1), 77–86 (1963)
11. Łukasiewicz, J., Łukasiewicz, Jan.: Selected Writings. North-Holland, Edited by L.

Borowski ( 1970)
12. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus des

Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III, 23, Reprinted and
translated in ( 1930)

13. Malinowski, G.: Many-Valued Logics. Oxford Logic Guides, vol. 25. Oxford University
Press, New York (1993)

14. McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic
Logic 16(1), 1–13 (1951)

15. Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and
Łukasiewicz logics. ACM Transactions on Computational Logic 6(3), 578–613 (2005)

16. Mostowski, A.: Axiomatizability of some many valued predicate calculi. Fundamentica
Mathematica 50, 165–190 (1961)

17. Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. Journal of
Functional Analysis 65, 15–63 (1986)

18. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Com-
puter Science 52(1-2), 145–153 (1987)

19. Novak, V.: On the Hilbert-Ackermann theorem in fuzzy logic. Acta. Mathematica et Infor-
matica Universitatis Ostraviensis 4, 57–74 (1996)

20. Ragaz, M.E.: Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik.
PhD thesis, ETH Zürich (1981)

21. Rutledge, J.D.: A preliminary investigation of the infinitely many-valued predicate calculus.
PhD thesis, Cornell University, Ithaca (1959)

22. Scarpellini, B.: Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von
Łukasiewicz. Journal of Symbolic Logic 27(2), 159–170 (1962)

23. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence
Research 14, 137–166 (2001)

24. Vojtás, P.: Fuzzy logic programming. Fuzzy Sets. and Systems 124, 361–370 (2001)



A Tableau Method for Public Announcement

Logics

Philippe Balbiani1, Hans van Ditmarsch2,
Andreas Herzig1, and Tiago de Lima1

1 Institut de Recherche en Informatique de Toulouse, France
2 Computer Science, University of Otago, New Zealand

Abstract. Public announcement logic is an extension of multi-agent
epistemic logic with dynamic operators to model the informational con-
sequences of announcements to the entire group of agents. We propose a
labelled tableau-calculus for this logic. We also present an extension of
the calculus for a logic of arbitrary announcements.

1 Introduction

Public announcement logic (PAL) was originally proposed in [1]. This is one from
a series of logics developed with the aim of modelling dynamics of knowledge and
belief in multi-agent settings. These logics, sometimes called dynamic epistemic
logics (DELs), deal with a number of epistemic scenarios and puzzles (see [2,3,4,5]
for some examples). PAL is the simplest of them. It extends epistemic logic (EL)
with dynamic operators [ϕ]. The formula [ϕ]ψ stands for ‘ψ is true after the
public announcement of ϕ’. Being the simplest form of agent communication,
public announcements are present in all DELs. Some recent works, such as [6,7,8],
show that they suffice to model dynamics of knowledge and belief in several cases.

Traditionally, proof systems for DELs are obtained by means of reduction
axioms. In the particular case of PAL, they permit the translation of each PAL-
formula into an equivalent EL-formula. The well-known proof system for PAL
is therefore obtained by just extending that of EL by the former’s reduction
axioms. It follows that both logics have the same expressivity. Nevertheless the
translated formula is exponentially larger than the original one. That is, PAL
is strictly more succinct. This is the reason why PAL is considered to be more
convenient for reasoning about knowledge [5]. Curiously however, satisfiability
check in PAL is also PSPACE-complete [9].

In this paper, we present a tableau-calculus for PAL. The method decides sat-
isfiability without reducing PAL-formulas to another language. We also extend
the calculus to deal with arbitrary public announcement logic (APAL). It extends
PAL by a modal operator ♦. The formula ♦ϕ stands for ‘there is a public an-
nouncement after which ϕ is true’. Note that while all other DELs deal with
the question ‘what becomes true after the execution of a given action?’, APAL
deals with the question ‘is there an action whose execution makes a given formula
true?’. Arbitrary public announcement logic is addressed in detail in [10].

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 43–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



44 P. Balbiani et al.

The organisation of the paper is as follows. In Section 2 we define syntax and
semantics of PAL. The tableau-calculus for this logic is presented in Section 3.
In Section 4 we transform it into a decision procedure. In Section 5 we expand
it to a tableau-calculus for APAL. Section 6 is dedicated to some related works
and discussion.

2 Syntax and Semantics of Public Announcement Logic

Assume a finite set of agents A and a countably infinite set of atoms P .

Definition 1 (Language). The language LPAL is inductively defined by the
following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ

where a ranges over A and p ranges over P .

For Kaϕ, read ‘agent a knows that ϕ’. For [ϕ]ψ, read ‘after public announcement
of ϕ, ψ is true’. Other propositional and epistemic connectives are defined by
usual abbreviations. The dual of Ka is K̂a and the dual of [ϕ] is 〈ϕ〉. For K̂aϕ
read ‘agent a considers it possible that ϕ’, for 〈ϕ〉ψ read ‘the announcement ϕ
can be made and after that ψ is true’.

Definition 2 (Structures). An epistemic model M = 〈W,R, V 〉 consists of
a non-empty set W of (factual) states (or ‘worlds’), accessibility R : A →
℘(W ×W ), and a valuation V : P → ℘(W ). For w ∈W , (M,w) is an epistemic
state (also known as a pointed Kripke model).

For R(a) we write Ra and for V (p) we write Vp. Given two states w,w′ in W ,
the intuitive meaning of wRaw

′ is that at w, the agent a considers it possible
that the real world is w′.

If no restriction is imposed over the accessibility relations in R, then we call
the resultant logic K-PAL. If each Ra is reflexive, then the resultant logic is
called KT-PAL. If each Ra is reflexive and transitive, then we call the resultant
logic S4-PAL. And finally, if each Ra is reflexive, transitive and symmetric, then
we call the resultant logic S5-PAL. We continue with the semantics.

Definition 3. Assume an epistemic model M = 〈W,R, V 〉. The interpretation
of an arbitrary ϕ ∈ LPAL is defined by induction as follows:

M,w |= p iff w ∈ Vp

M,w |= ¬ϕ iff M,w �|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ andM,w |= ψ
M,w |= Kaϕ iff for all v ∈W, wRav implies M, v |= ϕ
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

In the last clause, the epistemic modelM |ϕ = 〈Wϕ, Rϕ, V ϕ〉 is defined as follows:

Wϕ = {w′ ∈W |M,w′ |= ϕ}
Rϕ

a = Ra ∩ (Wϕ ×Wϕ)
V ϕ

p = Vp ∩Wϕ



A Tableau Method for Public Announcement Logics 45

Formula ϕ is valid in model M , notation M |= ϕ, if and only if for all w ∈ W ,
M,w |= ϕ. Let C be in {K,KT, S4, S5}. Formula ϕ is valid in C-PAL, notation
|=C-PAL ϕ, if and only if for all epistemic models M ∈ C-PAL, M |= ϕ.

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by all
agents. Therefore, the model M |ϕ is the model M restricted to all the states
where ϕ is true, including access between states. For the semantics of the dual
operators, we have that M,w |= 〈ϕ〉ψ if and only if M,w |= ϕ and M |ϕ,w |= ψ.

3 A Tableau Method for Public Announcement Logic

We present in this section a proof method for public announcement logic that
uses tableaux. Exactly in the same way as all other tableau methods, given a
formula ϕ, it systematically tries to construct a model for it. When it fails, ϕ is
inconsistent and thus its negation is valid.

In our representation formulas are prefixed by a number that represents pos-
sible worlds in the model (similar to [11, Chapter 8]). Formulas are also prefixed
by finite sequences of announcements corresponding to successive model restric-
tions (as in [9]). Given a finite sequence of formulas ψk = (ψ1 . . . ψk), for each
1 ≤ i ≤ k, the sequence (ψ1 . . . ψi) is noted ψi whereas ψ0 = ε denotes the empty
sequence. In addition, we write M |ψk for M |ψ1| . . . |ψk.

Definition 4. A labelled formula is a triple λ = (ψk, x, ϕ) where

– ψk is a finite sequence (ψ1 . . . ψk) of formulas in LPAL;
– x ∈ N; and
– ϕ ∈ LPAL.

The part ψk, x is the label of the formula ϕ. It represents a possible world x in
the epistemic model that is successively restricted by the formulas in ψk.

Definition 5. A skeleton is a ternary relation Σ ⊆ (A×N×N) that represents
the accessibility relations. A branch is a pair b = (Λ,Σ) where Λ is a set of
labelled formulas and Σ is a skeleton.

Definition 6 (Tableau). A tableau is a set T i = {bi1, bi2, . . . } of branches. A
tableau T i+1 is obtained from a tableau T i if and only if T i+1 = (T i \ {bij})∪B
for some bij = (Λ,Σ) ∈ T i and some finite set B of branches generated from bij
by the application of one of the tableau rules defined below.

¬: if (ψk, x,¬¬ϕ) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ)}, Σ)}.
∧: if (ψk, x, ϕ1 ∧ ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ1), (ψk, x, ϕ2)}, Σ)}.
∨: if (ψk, x,¬(ϕ1 ∧ ϕ2)) ∈ Λ, then B = {(Λ ∪ {(ψk, x,¬ϕ1)}, Σ), (Λ ∪ {(ψk, x,

¬ϕ2)}, Σ)}.



46 P. Balbiani et al.

K: if (ψk, x,Kaϕ) ∈ Λ and (a, x, x′) ∈ Σ, then B = {(Λ0, Σ), . . . (Λk, Σ)},
where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′, ψ2), (ψ2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−2, x′, ψk−1), (ψk−1, x′,¬ψk)}
Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk), (ψk, x′, ϕ)}.

T: if (ψk, x,Kaϕ) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ)}, Σ)}.
4: if (ψk, x,Kaϕ) ∈ Λ and (a, x, x′) ∈ Σ, then B = {(Λ1, Σ), . . . (Λk+1, Σ)},

where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′, ψ2), (ψ2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−2, x′, ψk−1), (ψk−1, x′,¬ψk)}
Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk), (ψk, x′,Kaϕ)}.

5↑: if (ψk, x,Kaϕ) ∈ Λ and (a, x′, x) ∈ Σ, then B = {(Λ1, Σ), . . . (Λk+1, Σ)},
where
Λ0 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ1 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′,¬ψ2)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′, ψ2), (ψ2, x′,¬ψ3)}

...
Λk−1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−2, x′, ψk−1), (ψk−1, x′,¬ψk)}
Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk), (ψk, x′,Kaϕ)}.

K̂: if (ψk, x,¬Kaϕ) ∈ Λ, then B = {(Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk),
(ψk, x′,¬ϕ)}, Σ ∪ {(a, x, x′)})} for some x′ that does not appear in Λ.

[·]: if (ψk, x, [ϕ1]ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x,¬ϕ1)}, Σ), (Λ ∪ {(ψk, x, ϕ1),
(ψkϕ1, x, ϕ2)}, Σ)}.

〈·〉: if (ψk, x,¬[ϕ1]ϕ2) ∈ Λ, then B = {(Λ ∪ {(ψk, x, ϕ1), (ψkϕ1, x,¬ϕ2)}, Σ)}.

Given a formula ϕ ∈ LPAL, the tableau T 0 = {b01} = {({(ε, 0, ϕ)}, ∅)} is the
initial tableau for ϕ. A tableau for ϕ is a tableau that can be obtained from the
initial tableau for ϕ by successive applications of tableau rules.

Rules ¬, ∧ and ∨ are standard. The intuition behind rules [·] and 〈·〉 reflects
the semantics of public announcements. The model (M,w) satisfies [ψ]ϕ if and
only if (M,w) satisfies ¬ψ or it satisfies ψ and the restricted model satisfies ϕ.
Rule 〈·〉 is the dual of rule [·]. The rules for the knowledge operators are quite
different from their correspondent in EL. When a new world x′ is created in
M |ψ0|ψ1| . . . |ψk by rule K̂, we must be sure that this world can consistently
belong to M and that it is not deleted by one of the announcements of the
sequence. In the case of rule K, the world x′ was already created, but possibly



A Tableau Method for Public Announcement Logics 47

in a model restricted by a different sequence of announcements. We therefore
must be sure that x′ would also be present in a model generated by the sequence
of announcements we have in hand. This is also the case for rules 4 (transitivity)
and 5↑ (symmetry), but not for rule T (reflexivity), because in the latter we do
not visit a different world.

The tableau method for K-PAL consists on rules ¬, ∧, ∨, K, K̂, [·] and 〈·〉.
For KT-PAL, we also have rule T. For S4-PAL, we have all rules for KT-PAL
plus rule 4. And for S5-PAL, we have all rules for S4-PAL plus rule 5↑.

Definition 7. Let b = (Λ,Σ) be a branch. The set Λ is blatantly inconsistent
if and only if {(ψk, x, ϕ), (ψk, x,¬ϕ)} ⊆ Λ or {(ψk, x, p), (χ	, x,¬p)} ⊆ Λ. The
branch b is closed if and only if Λ is blatantly inconsistent. The branch b is open
if and only if it is not closed. A tableau is closed if and only if all its branches
are closed. A tableau is open if and only if it has at least one open branch.

Note that (ψk, x, p) and (χ	, x,¬p) are inconsistent because boolean formulas
are preserved through announcements.

Example 1. Consider the formula [p∧¬Kap]¬(p∧¬Kap). In Figure 1 the tableau
method is used to show its validity in K-PAL. Note that in this formula the
announcement corresponds to the so-called Moore sentence [6]: “p is true and
agent a does not know it”. When it is true and publicly announced, all the
agents, in particular agent a, become aware of it. Then the sentence becomes
false just after being announced.

1. ε, 0,¬[p ∧ ¬Kap]¬(p ∧ ¬Kap)
2. ε, 0, p ∧ ¬Kap (〈·〉 : 1)
3. p ∧ ¬Kap, 0,¬¬(p ∧ ¬Kap) (〈·〉 : 1)
4. p ∧ ¬Kap, 0, p ∧ ¬Kap (¬ : 3)
5. p ∧ ¬Kap, 0, p (∧ : 4)
6. p ∧ ¬Kap, 0,¬Kap (∧ : 4)

7. ε, 1, p ∧ ¬Kap (a, 0, 1) ∈ Σ ( �K : 6)

8. p ∧ ¬Kap, 1,¬p ( �K : 6)
9. ε, 1, p (∧ : 7)
10. ε, 1,¬Kap (∧ : 7)

closed (8, 9)

Fig. 1. Closed tableau for the formula [p ∧ ¬Kap]¬(p ∧ ¬Kap)

Theorem 1 (Soundness and completeness). For C ∈ {K,KT, S4, S5},
there is a closed C-PAL-tableau for ¬ϕ if and only if ϕ is C-PAL-valid.

Proof. (⇒): we prove that if ϕ is satisfiable, then there is no closed tableau for
ϕ. We do this by showing that all tableau rules preserve satisfiability. To do so
we first need the following definition.



48 P. Balbiani et al.

Definition 8. The branch b is satisfiable if and only if there exists an epis-
temic structure M = 〈W,R, V 〉 and a function f from N to W such that for all
(a, x, x′) ∈ Σ, f(x)Raf(x′) and for all (ψk, x, ϕ) ∈ Λ:

M |ψ0, f(x) |= ψ1, M |ψ1, f(x) |= ψ2, . . . ,M |ψk−1, f(x) |= ψk, M |ψk, f(x) |= ϕ

Now, let T i be a tableau for a given formula that contains a branch b = (Λ,Σ),
we show that if b is satisfiable, then the set of branches B generated by any
tableau rule has also at least one satisfiable branch.

Suppose that the branch b = (Λ,Σ) is satisfiable. The proofs for rules ¬, ∧
and ∨ are straightforward and left to the reader. We then prove that rule K
is sound. If (ψk, x,Kaϕ) ∈ Λ and (a, x, x′) ∈ Σ, then the application of rule K
generates all the branches bj = (Λj , Σ) for 1 ≤ j ≤ k + 1 such that

Λ1 = Λ ∪ {(ψ0, x′,¬ψ1)}
Λ2 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′,¬ψ2)}
Λ3 = Λ ∪ {(ψ0, x′, ψ1), (ψ1, x′, ψ2), (ψ2, x′,¬ψ3)}

...
Λk = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−2, x′, ψk−1), (ψk−1, x′,¬ψk)}
Λk+1 = Λ ∪ {(ψ0, x′, ψ1), . . . , (ψk−1, x′, ψk), (ψk, x′, ϕ)}.

By hypothesis, there exists an epistemic structureM = 〈W,R, V 〉 and a function
f from N toW such that for all (a, x, x′) ∈ Σ, f(x)Raf(x′) andM |ψ0, f(x) |= ψ1,
. . . ,M |ψk−1, f(x) |= ψk andM |ψk, f(x) |= Kaϕ. Then,M |ψk, f(x′) |= ϕ. Then,
one of the following conditions holds:

M |ψ0, f(x′) |= ¬ψ1 or
M |ψ0, f(x′) |= ϕ1,M |ψ1, f(x′) |= ¬ψ2 or
M |ψ0, f(x′) |= ϕ1,M |ψ1, f(x′) |= ψ2,M |ψ2, f(x′) |= ¬ψ3 or

...
M |ψ0, f(x′) |= ϕ1, . . . ,M |ψk−2, f(x′) |= ψk−1,M |ψk−1, f(x′) |= ¬ψk or
M |ψ0, f(x′) |= ϕ1, . . . ,M |ψk−1, f(x′) |= ψk,M |ψk, f(x′) |= ϕ.

Therefore one of the branches bj is satisfiable.
Rules T, 4 and 5↑ are proved to be sound in a similar way. In these cases we

also use the fact that Ra is respectively reflexive, transitive and symmetric. We
omit the details here.

For rule K̂ suppose that (ψk, x,¬Kaϕ) ∈ Λ. Then the application of rule K̂
generates only one branch b1 = (Λ1, Σ1) such that Λ1 = Λ ∪ {(ψ0, x′, ψ1), . . . ,
(ψk−1, x′, ψk), (ψk, x′,¬ϕ)} and Σ1 = Σ ∪ {(a, x, x′)} for some x′ that does not
occur in Λ. By hypothesis, there exists an epistemic structureM = 〈W,R, V 〉 and
a function f from N to W such that M |ψ0, f(x) |= ψ1, . . . , M |ψk−1, f(x) |= ψk

and M |ψk, f(x) |= ¬Kaϕ. Then, there exists w ∈ Wψk

such that f(x)Rψk

a w
and M |ψ0, w |= ψ1, . . . , M |ψk, w |= ψk and M |ψk, w |= ¬ϕ. We thus consider
the function f ′ : N → W such that for all x that occur in Λ, f ′(x) = f(x) and
f ′(x′) = w. Therefore, b1 is satisfiable.



A Tableau Method for Public Announcement Logics 49

For rule [·] suppose that (ψk, x, [ϕ1]ϕ2) ∈ Λ. Then the application of rule
[·] generates branches b1 = (Λ ∪ {(ψk, x,¬ϕ1)}, Σ) and b2 = (Λ ∪ {(ψk, x, ϕ1),
(ψkϕ1, x, ϕ2)}, Σ). Seeing thatM |ψk, f(x) |= [ϕ1]ϕ2 iff eitherM |ψk, f(x) |= ¬ϕ1

or M |ψk, f(x) |= ϕ1 and M |ψk|ϕ1, f(x) |= ϕ2, thus b1 is satisfiable or b2 is
satisfiable.

For rule 〈·〉 suppose that (ψk, x,¬[ϕ1]ϕ2) ∈ Λ. Then the application of rule
〈·〉 generates only one branch b1 = (Λ∪{(ψk, x, ϕ1), (ψk, ϕ1, x,¬ϕ2)}, Σ). Seeing
thatM |ψk, f(x) |= ¬[ϕ1]ϕ2 iffM |ψk, f(x) |= ϕ1 andM |ψk|ϕ1, f(x) |= ¬ϕ2, thus
b1 is satisfiable.

(⇐): we show that if a saturated tableau for a given formula ϕ is open, then
ϕ is satisfiable. Suppose that T∞ is an open saturated tableau for a S5-PAL-
formula ϕ. Then, it contains at least one open branch b = 〈Λ,Σ〉. We use this
branch to construct an epistemic structure M = 〈W,R, V 〉 that satisfies ϕ as
follows:

– W = {x ∈ N | x occurs in Λ};
– Ra = reflexive, transitive and symmetric closure of {(x, x′) | (a, x, x′) ∈ Σ};

and
– Vp = {x | (ψk, x, p) ∈ Λ for some ψk}.

And we also define a function f(x) = x for all x occurring in Λ.
Clearly, W is a non-empty set, Ra is an equivalence relation, Vp assigns a

subset of W to each proposition that appears on the tableau and if (a, x, x′) ∈
Σ, then f(x′)Raf(x). Thus, we now show that for all labelled formulas λ =
(ψk, x, ϕ) ∈ Λ, we have P(λ) defined as follows:

P(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M |ψ0, f(x) |= ψ1 and
...

M |ψk−1, f(x) |= ψk and
M |ψk, f(x) |= ϕ

We do this by induction on the length of the labelled formula λ that is recursively
defined as follows:

len(p) = 1
len(¬ϕ) = 1 + len(ϕ)
len(ϕ1 ∧ ϕ2) = 1 + len(ϕ1) + len(ϕ2)
len(Kaϕ) = 1 + len(ϕ)
len([ϕ1]ϕ2) = 1 + len(ϕ1) + len(ϕ2)
len(ψk) = len(ψ1) + · · ·+ len(ψk)
len(ψk, x, ϕ) = 1 + len(ψk) + len(ϕ)

The details are left to the reader.

4 Decision Procedures for Public Announcement Logics

In the way the method is defined, redundant applications of tableau rules are
allowed. In particular, they can be applied indefinitely often. Therefore it may



50 P. Balbiani et al.

never stop. In this section we define strategies for the application of the tableau
rules. They are inspired by the “tableau construction” defined in [12].

When a set of labelled formulas Λ is not saturated under one or more tableau
rules, we say that λ ∈ Λ is a witness to this fact if the given rule, or rules,
were still not applied to λ. For convenience, we further use notation Λ(x) for the
set of labelled formulas of x, defined by {(ψk, ϕ) | (ψk, x, ϕ) ∈ Λ}. And we also
use notation Λ(x, a) for the set of labelled formulas of agent a in x, defined by
{(ψk,Kaϕ) | (ψk, x,Kaϕ) ∈ Λ} ∪ {(ψk,¬Kaϕ) | (ψk, x,¬Kaϕ) ∈ Λ}.

The strategy defined below is for S5-PAL. It constructs a tree of nodes s
whose labels are tableau branches L(s) = (Λs, Σs) generated by the application
of tableau rules to their antecedents.

Strategy 1. Let ϕ0 ∈ LPAL be given. Construct a tree as follows.

1. Start with a single node s0 (the root of the tree) whose label is the initial
branch for ϕ0, i.e., the pair L(s0) = (Λs0 , Σs0), where Λs0 = {(ε, 0, ϕ0)} and
Σs0 = ∅.

2. Repeat until neither step 2(a) nor step 2(b) below applies.
(a) World saturation: if s is a leaf with label L(s) such that L(s) is open and

not saturated under rules ¬, ∧, T, 〈·〉, ∨, [·], K, 4 and 5↑, and λ ∈ Λs

is a witness to this fact, then do:
i. if λ = (ψk, x,¬¬ϕ) then create a successor s′ such that Λs′ = Λs ∪
{(ψk, x, ϕ)} and Σs′ = Σs. And then go to step 2.

ii. if λ = (ψk, x, ϕ1 ∧ ϕ2) then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, x, ϕ1), (ψk, x, ϕ2)} and Σs′ = Σs. And then go to step 2.

iii. if λ = (ψk, x,Kaϕ) then create a successor s′ such that Λs′ = Λs ∪
{(ψk, x, ϕ)} and Σs′ = Σs. And then go to step 2.

iv. if λ = (ψk, x,¬[ϕ1]ϕ2) then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, x, ϕ1), (ψkϕ1, x, ϕ2)} and Σs′ = Σs. And then go to step
2.

v. if λ = (ψk, x,¬(ϕ1 ∧ ϕ2)) then create two successors s1 and s2 such
that Λs1 = Λs ∪ {(ψk, x,¬ϕ1)} and Σs1 = Σs, and Λs2 = Λs ∪
{(ψk, x,¬ϕ2)} and Σs2 = Σs. And then go to step 2.

vi. if λ = (ψk, x, [ϕ1]ϕ2) then create two successors s1 and s2 such
that Λs1 = Λs ∪ {(ψk, x,¬ϕ1)} and Σs1 = Σs, and Λs2 = Λs ∪
{(ψk, x, ϕ1), (ψkϕ1, x, ϕ2)} and Σs2 = Σs. And then go to step 2.

vii. if λ = (ψk, x,Kaϕ) and (a, x, x′) ∈ Σ, then for each i ∈ {0, 1, . . . , k−
1}, create a successor si such that Λsi = Λs∪{(ψj , x′, ψj+1) | 0 ≤ j <
i}∪{(ψi, x′,¬ψi+1)} and Σsi = Σs, and also create a successor node
sk such that Λsk

= Λs ∪ {(ψj , x′, ψj+1) | 0 ≤ j < k} ∪ {(ψk, x′, ϕ)}
and Σsk

= Σs. And then go to step 2.
viii. if λ = (ψk, x,Kaϕ) and (a, x, x′) ∈ Σ, then for each i ∈ {0, 1, . . . , k−

1}, create a successor si such that Λsi = Λs∪{(ψj , x′, ψj+1) | 0 ≤ j <
i}∪{(ψi, x′,¬ψi+1)} and Σsi = Σs, and also create a successor node



A Tableau Method for Public Announcement Logics 51

sk such that Λsk
= Λs∪{(ψj , x′, ψj+1) | 0 ≤ j < k}∪{(ψk, x′,Kaϕ)}

and Σsk
= Σs. And then go to step 2.

ix. if λ = (ψk, x,Kaϕ) and (a, x′, x) ∈ Σ, then for each i ∈ {0, 1, . . . , k−
1}, create a successor si such that Λsi = Λs∪{(ψj , x′, ψj+1) | 0 ≤ j <
i}∪{(ψi, x′,¬ψi+1)} and Σsi = Σs, and also create a successor node
sk such that Λsk

= Λs∪{(ψj , x′, ψj+1) | 0 ≤ j < k}∪{(ψk, x′,Kaϕ)}
and Σsk

= Σs. And then go to step 2.
(b) Create a new world: if s is a leaf with label L(s) such that L(s) is open,

world-saturated and not saturated under rule K̂ and λ = (ψk, x,¬Kaϕ)
is a witness to this fact, then do steps i, ii and iii below. And then go to
step 2.
i. generate a new natural number x′ that does not appear in Σs and

create a label L′ = (Λ′, Σ′), where Λ′ = {(ψj , x′, ψj+1) | 0 ≤ j <
k} ∪ {(ψk, x′,¬ϕ)} and Σ′ = {(a, x, x′)}.

ii. if there is a sequence of natural numbers y0, y1, . . . , yn such that yn =
x and for all 0 ≤ i < n, (a, yi, yi+1) ∈ Σs and Λs(x, a) = Λs(y0, a)
and Λ′ ⊆ Λs(y1), then create a successor s′ such that Λs′ = Λs and
Σs′ = Σs ∪ {(a, x, y1)}.

iii. if step 2(b)ii does not apply, then create a successor s′ such that
Λs′ = Λs ∪ Λ′ and Σs′ = Σs ∪Σ′.

3. If s is a leaf and its label L(s) is open, then return true, else return false.

Simple modifications of Strategy 1 above give us strategies for the other logics we
consider here. A strategy for S4-PAL can be obtained by removing step 2(a)ix.
By removing steps 2(a)viii and 2(a)ix, we obtain a strategy for KT-PAL. And
by removing steps 2(a)iii, 2(a)viii and 2(a)ix we obtain a strategy for K-PAL.

Note that step 2(b)ii has a loop test. This is crucial to guarantee that the
process halts for S4-PAL and S5-PAL. Before applying rule K̂, which means
that a new “world” x′ will be created, it verifies that there is no loop.

We continue by proving termination. After that we prove soundness and com-
pleteness for S5-PAL only. Proofs for the other logics are similar and left to the
reader. We first need a definition and a lemma.

Definition 9. The set of labelled sub-formulas of ϕ, Sub(ϕ), and the set of
labelled sub-formulas of ϕ and its negations, Sub+(ϕ), are recursively defined as
follows:

Sub(p) = {(ε, p)}
Sub(¬ϕ) = Sub(ϕ) ∪ {(ε,¬ϕ)}

Sub(ϕ ∧ ψ) = Sub(ϕ) ∪ Sub(ψ) ∪ {(ε, ϕ ∧ ψ)}
Sub(Kaϕ) = Sub(ϕ) ∪ {(ε,Kaϕ)}
Sub([ψ]ϕ) = Sub(ψ) ∪ {(ψχk, ϕ′) | (χk, ϕ′) ∈ Sub(ϕ)} ∪ {(ε, [ψ]ϕ)}

Sub+(ϕ) = Sub(ϕ) ∪ {(ψk,¬ϕ′) | (ψk, ϕ′) ∈ Sub(ϕ)}



52 P. Balbiani et al.

Lemma 1

1. | Sub(ϕ0)| ≤ len(ϕ0).
2. For all (ψk, ϕ) ∈ Sub(ε, ϕ0), k ≤ len(ϕ0).
3. | Sub+(ϕ)| ≤ 2× len(ϕ).

Items 1 and 2 are proved in [9] and 3 is an obvious consequence of them.

Theorem 2. For all ϕ ∈ LPAL, Strategy 1 creates a finite tree for ϕ.

Proof. Let a LPAL-formula ϕ be given. Because Sub+(ϕ) is finite, each step
generates a finite number of immediate successors. Then, by the fact that the
initial tree for ϕ is a single node (and, in particular, it is finite), each step of the
strategy generates a finite tree.

We now show that each step is applied finitely often. Let len(ϕ) = n. By
Lemma 1, the number of labelled sub-formulas of ϕ and its negations is bounded
by 2n. Then after 2n applications of step 2(a) all the leafs of the tree are world-
saturated. This means that there can be at most 2n applications of step 2(a)
between two subsequent applications of step 2(b).

Now, note that there exists at most 22n different subsets of Sub+(ϕ). This
means that the loop tests can fail at most 22n times. It immediately follows that
step 2(b) can be applied at most 22n times. Therefore, Strategy 1 always creates
a finite tree and thus always halts.

Theorem 3. For all ϕ0∈LPAL, ϕ0 is S5-PAL-satisfiable if and only if Strategy1
for ϕ0 returns true.

Proof. (⇒): we show that if ϕ is S5-PAL-satisfiable, then the tree for ϕ generated
by Strategy 1 will have at least one leaf whose label is an open tableau branch.
We do this by showing that all steps preserve satisfiability. This proof is along the
lines of the first part of the proof of Theorem 1. The only remarkable difference is
the step 2(b)ii: suppose that (ψk, x,¬Kaϕ) ∈ Λs and that the loop test succeeds.
This means that there is a sequence y0,y1,. . . ,yn such that yn = x and for all
0 ≤ i < n, (a, yi, yi+1) ∈ Σs, and s has a successor s′ such that Λs′ = Λs

and Σs′ = Σs ∪ {(a, x, y1)}. We then consider the (unfolded) tableau branch
L′ = (Λ′, Σ′) such that Λ′ = Λs′ ∪ {(χ	, x′, ϕ′) | (χ	, y1, ϕ

′) ∈ Λs′} and Σ′ =
(Σs \ {(a, x, y1)}) ∪ {(a, x, x′), (a, x′, y2)}. Clearly, L′ is satisfiable if and only if
L(s′) is satisfiable. By hypothesis, there is an epistemic structureM = 〈W,R, V 〉
and a function f : N → W that satisfy L(s). Then there exists w ∈ Wψk

such
that f(x)Rψk

a w. We thus consider the function f ′ : N → W such that for all
integer x that occur in Λ′, f ′(x) = f(x) and f ′(x′) = w. Therefore L(s′) is
satisfiable.

(⇐): if Strategy 1 for ϕ returns true, then the tree for ϕ has a leaf s such
that L(s) is open and saturated. Then we use this node to construct a model
M = 〈W,R, V 〉 that satisfies ϕ as follows. W contains all x that appear in Σs; R
is the reflexive, transitive and symmetric closure of all triples (a, x, x′) ∈ Σs; and
each Vp contains all x such that (ψk, x, p) ∈ Λs for some ψk. We then proceed by



A Tableau Method for Public Announcement Logics 53

induction on the length of labelled formulas where the induction hypothesis is: if
L(s) is an open saturated branch that contains (ψk, x, ϕ′) and len(ψk, x, ϕ′) < n,
then M |ψ0, x |= ψ1, . . . ,M |ψk−1, x |= ψk, andM |ψk, x |= ϕ′. This is done along
the lines of the second part of the proof of Theorem 1. The details are left to
the reader.

The depth of the tree created in Strategy 1 is exponential on the size of the input
formula. However, S5-PAL is proven to be in PSPACE [9], which means that this
algorithm is not optimal. Below, we present optimal strategies for logics K-PAL
and KT-PAL.

Similarly to the “tableau construction” defined in [12], instead of labelling
the nodes of the tree with entire tableau branches, in our next strategy, node
labels contain formulas of only one world x. Hence, we now use pairs of the
form λ = (ψk, ϕ) that, for convenience, are called labelled formulas as well (note
that x is no longer necessary). But our algorithm differs from that of [12] in
a crucial point: suppose that L(s) contains the formula (ψk,Kaϕ). When an
a-successor node s′ of s is created, one cannot immediately add the labelled
formula (ψk, ϕ) to L(s′). The reason is that the world s′ can have been deleted by
some announcement in the sequence ψk (Cf. tableau rules K, 4 and 5↑). Then, in
step 2(b), before adding this labelled formula to L(s′), the algorithm “verifies”
that each ψi is true in s′. This is implemented with an auxiliary set Γs′ .

Strategy 2. Let ϕ0 ∈ LPAL be given. Construct a tree as follows.

1. Start with a single node s0 (the root of the tree) whose label is the pair
L(s0) = (Λs0 , Γs0), where Λs0 = {(ε, ϕ0)} and Γs0 = ∅.

2. Repeat until neither 2(a) nor 2(b) below applies:
(a) Local saturation: if s is a leaf with label L(s) such that L(s) is open and

not saturated under rules ¬, ∧, ∨, K and T, and λ ∈ Λs is a witness
to this fact, then do:
i. if λ = (ψk,¬¬ϕ) ∈ Λs then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ)} and Γs′ = Γs. And then go to step 2.

ii. if λ = (ψk, ϕ1 ∧ ϕ2) ∈ Λs then create successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ1), (ψk, ϕ2)} and Γs′ = Γs. And then go to step 2.

iii. if λ = (ψk,Kaϕ) ∈ Λs then create successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ)} and Γs′ = Γs. And then go to step 2.

iv. if λ = (ψk,¬[ϕ1]ϕ2) ∈ Λs then create a successor s′ such that Λs′ =
Λs ∪ {(ψk, ϕ1), (ψkϕ1, ϕ2)} and Γs′ = Γs. And then go to step 2.

v. if λ = (ψk,¬(ϕ1∧ϕ2)) ∈ Λs then create two successors s1 and s2 such
that Λs1 = Λs ∪{(ψk, ϕ1)} and Γs1 = Γs, and Λs2 = Λs ∪ {(ψk, ϕ2)}
and Γs2 = Γs. And then go to step 2.

vi. if λ = (ψk, [ϕ1]ϕ2) ∈ Λs then create two successors s1 and s2 such
that Λs1 = Λs∪{(ψk,¬ϕ1)} and Γs1 = Γs, and Λs2 = Λs∪{(ψk, ϕ1),
(ψkϕ1, ϕ2)} and Γs2 = Γs. And then go to step 2.

vii. if λ = (ψk, ϕ) ∈ Γs then for each i ∈ {0, 1, . . . , k−1}, create a succes-
sor si such that Λsi = Λs ∪ {(ψj , ψj+1) | 0 ≤ j < i} ∪ {(ψi,¬ψi+1)}
and Γsi = Γs \ {λ}, and also create a successor sk such that Λsk

=



54 P. Balbiani et al.

Λs ∪ {(ψj , ψj+1) | 0 ≤ j < k} ∪ {(ψk, ϕ)} and Γsk
= Γs \ {λ}. And

then go to step 2.
(b) Create new worlds: if s is a leaf with label L(s) which is local saturated

and not saturated under rule K̂, then for each labelled formula of the
form λ = (ψk,¬Kaϕ) ∈ Λs that is witness to this, create an a-successor
s′ such that Λs′ = {(ψj, ψj+1) | 0 ≤ j < k} ∪ {(ψk,¬ϕ)} and Γs′ =
{(χk′

, ϕ′) | {(χk′
,Kaϕ

′)} ∈ Λs}). And then go to step 2.
(c) Mark nodes: if the node s with label L(s) is not marked sat, then mark

it sat if either:
– Λs is not local saturated and one of its successor is marked sat;
– Λs is local saturated, it is not blatantly inconsistent and Λs does not

contain labelled formulas of the form (ψk,¬Kaϕ); or
– Λs is local saturated and s has successors and all of them are marked

sat.
3. If the root of the tree is marked sat, then return true, else return false.

The strategy above can be modified for other two logics we consider here. For
K-PAL we remove step 2(a)iii, and for S4-PAL, we replace step 2(b) by the
following:

2(b’) Create new worlds: if s is a leaf with label L(s) which is local saturated
and not saturated under rule K̂, then for each labelled formula of the
form λ = (ψk,¬Kaϕ) ∈ Λs that is a witness to this, then do steps i, ii
and iii below. And then go to step 2.
i. create a label L′ = (Λ′, Γ ′), where Λ′ = {(ψj , ψj+1) | 0 ≤ j <

k}∪{(ψk,¬ϕ)} and Γ ′ = {(χk′
, ϕ′), (χk′

,Kaϕ
′) | (χk′

,Kaϕ
′) ∈ Λs}).

ii. if there is no node s′′ in the path from the root to s such that Ls′′ =
L′, then create an a-successor node s′ with label L(s′) = L′.

iii. if step 2(b)ii does not apply, then create an a-arrow to the node s′′

such that L(s′′) = L′.

Note that we also have a loop test in step 2(b’)ii. The idea is the same as
in Strategy 1, but here, we also compare the sets Γ . We also remark that it is
not possible to use the same idea to define a strategy for S5-PAL. We address
this question in Section 6. In the sequel, we prove termination, soundness and
completeness for S4-PAL only. We leave other cases to the reader.

Theorem 4. For all ϕ ∈ LPAL, Strategy 2 creates a finite tree for ϕ.

Proof. The proof is essentially the same as for Theorem 2.

Theorem 5. For all ϕ∈LPAL, ϕ is S4-PAL-satisfiable if and only if Strategy2
for ϕ returns true.

Proof. From the left to the right. We show that if ϕ is S4-PAL-satisfiable, then
the tree for ϕ generated by Strategy 2 has its root marked sat. We do this by
showing that all steps preserve satisfiability. This proof is along the lines of the
first part of proof of Theorem 1. The differences are steps 2(a)vii and 2(b’). Note



A Tableau Method for Public Announcement Logics 55

that step 2(a)vii performs essentially the same task as steps 2(a)vii and 2(a)viii
of Strategy 1. So their proof of soundness is very similar. For step 2(b’), note
that it is similar to step 2(b) of Strategy 1. So its proof of soundness is also
similar. We omit details here.

From the right to the left. If Strategy 2 for ϕ returns true, then the root s0
is marked sat. Then, there is a sub-tree such that all its nodes are marked sat.
We use this tree to construct a model M = 〈W,R, V 〉 that satisfies ϕ in the
following way. W contains all s in the sub-tree such that s is local saturated;
each Ra is the reflexive and transitive closure of pairs (s, s′) of nodes in W such
that s′ is a descendent of an a-successor of s; and each Vp contains all s ∈ W
such that (ψk, p) ∈ Λs for some ψk. The proof continues along the lines of the
second part of the proof of Theorem 1. We omit details here.

We continue by showing computational complexity of Strategy 2 for K-PAL and
KT-PAL. Remark that no optimal procedure is achieved for S4-PAL. We discuss
this in Section 6.

Theorem 6 (Complexity). The tableau system for K-PAL and KT-PAL can
be implemented in polynomial space.

Proof. We first show that the height of the trees, generated by Strategy 2, are
polynomial in len(ϕ). The tree construction starts with the root node s0 whose
label is L(s0) = ({λ0}, ∅). Suppose that len(λ0) = n. Note that by Lemma 1 step
2(a) can be applied at most 2n times before generating a node s such that Λs is
either closed or saturated. Also note that at this stage Γs is empty. Now, suppose
that Λs is local saturated. Also suppose that s′ is a local saturated descendent of
an a-successor of s. Note that the K-modal depth of Λs′ is less than that of Λs.
Because the number of Ka operators in ϕ is at most n, the root of the tree can
have at most n a-descendents in the same branch of the tree. From this fact and
the observation made before, it follows that the tree has height at most O(n2).

We now prove that a depth first exploration of the trees can be made using a
polynomial amount of memory. To see this, remember that by Lemma 1 we have
that for all nodes s in the tree, |L(s)| ≤ 4n. Then we can use a vector of 4n bits to
encode the label of each node in the tree. We do this by setting to 1 the bit that
corresponds to the formulas that are present in L(s). Each step of Strategy 2
can produce at most 2n different immediate successors. Then, for each node, we
can use a vector of 4n2 bits to memorise all the choices to be explored after the
backtrack. It follows that we need at most O(n5) bits of memory to explore the
entire tree.

5 A Tableau Method for Arbitrary Announcement Logic

Consider the extension of public announcement logic proposed in [10] wherein we
can express what becomes true, whether known or not, without explicit reference
to announcements realising that. For example, when p is true, it becomes known
by announcing it:

〈p〉Kap



56 P. Balbiani et al.

We can also describe ‘there is an announcement after which the agent knows p’
straightforwardly as

♦Kap

In case p is false, we can achieve ♦Ka¬p instead. The formula ♦(Kap ∨Ka¬p)
is valid. We call the logic arbitrary public announcement logic. For more infor-
mation, see [10].

Definition 10 (Language and semantics). The language LAPAL of arbitrary
public announcement logic is inductively defined as

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [ϕ]ϕ | �ϕ

where a ∈ A and p ∈ P . The extra clause needed for the semantics is as follows
(note the restriction to the language of PAL):

M,w |= �ϕ iff for all ψ ∈ LPAL, M,w |= [ψ]ϕ

For �ϕ, read ‘after every public announcement, ϕ is true’. The dual of � is ♦.
For ♦ϕ, read ‘there is an announcement after which ϕ’. For the semantics of
the dual operator, we have that: M,w |= ♦ϕ iff there is a ψ ∈ LPAL such that
M,w |= 〈ψ〉ϕ.

Similarly as done in Section 2, we define K-APAL, KT-APAL, S4-APAL and
S5-APAL.

Example 2. A valid formula of the logic is ♦(Kap ∨ Ka¬p). To prove this, let
(M,w) be arbitrary. Either M,w |= p or M,w |= ¬p. In the first case, M,w |=
♦(Kap ∨Ka¬p) because M,w |= 〈p〉(Kap ∨Ka¬p) – the latter is true because
M,w |= p and M |p, w |= Kap; in the second case, we analogously derive M,w |=
♦(Kap ∨Ka¬p) because M,w |= 〈¬p〉(Kap ∨Ka¬p).

We now provide an extension of the tableau method for public announcement
logic to a tableau method for arbitrary public announcement logic. We reuse
labelled formulas, skeleton and branch as introduced in Definitions 4 and 5, as
well as the notions of closed and open branch as in Definition 7.

Definition 11 (Tableau (continuation)). A tableau for the formula ϕ ∈
LAPAL is defined as in Definition 6. The tableau rules are the same, plus the
following ones.

�: If (ψk, n,�ϕ) ∈ Λ, then B = {〈Λ∪ {(ψk : n : [χ]ϕ)}, Σ〉} for any χ ∈ LPAL.
♦: If (ψk, n,¬�ϕ) ∈ Λ, then B = {〈Λ ∪ {(ψk : n : ¬[p]ϕ)}, Σ〉} for some p ∈ P

that does not occur in Λ.

These rules are similar to Smullyan’s tableau rules for closed first-order formu-
las [13,14]. They reflect that the operator � quantifies over announcements. In
tableau rule �, this operator is eliminated by replacing it by an arbitrary LPAL-
formula. Tableau rule ♦ is more curious though: instead of replacing the operator
by an announcement of a LPAL-formula ψ, we replace it by an announcement of



A Tableau Method for Public Announcement Logics 57

a new propositional letter. The intuitive argument here is the following. Since
this new propositional letter does not occur in the branch, we are free to give
it an arbitrary interpretation to represent a specific restriction in the model. In
this way, we make the calculus simpler because it is not necessary to make a
‘good choice’ at the moment of the application of rule ♦.

Example 3. Consider the formula [♦Kap]Kap. Note that it is valid in S5-APAL
since its announcement corresponds to the sentence: ‘there is an announcement
after which agent a knows that p’. That is, it is publicly announced that p can
be known. This means that p is true and thus now agent a knows it. In Figure 2
we use the tableau method to show that this formula is S5-APAL-valid.

1. ε, 0,¬[¬�¬Kap]Kap
2. ε, 0,¬�¬Kap (〈·〉 : 1)
3. ¬�¬Kap, 0,¬Kap (〈·〉 : 1)
4. ε, 0,¬[p]¬Kap (♦ : 2)
5. ε, 0, p (〈·〉 : 4)
6. p, 0,¬¬Kap (〈·〉 : 4)
7. p, 0, Kap (¬ : 6)

8. ε, 1,¬�¬Kap (a, 0, 1) ∈ Σ ( �K : 3)

9. ¬�¬Kap, 1,¬p ( �K : 3)
10. p, 1, p (K : 7)

closed (9, 10)

Fig. 2. Closed tableau for the formula [♦Kap]Kap

Theorem 7 (Soundness and completeness (continuation)). For all ϕ ∈
LAPAL, there is a closed tableau for ¬ϕ if and only if ϕ is S5-APAL-valid.

Proof. This is an easy extension of the proof of theorem 1 (details are omitted).

This tableau method can be used for giving us a proof of semi-decidability of
this logic.

Theorem 8. The set of S5-APAL-valid formulas of LAPAL is recursively enu-
merable.

Proof. First note that the same argument used in the proof of Theorem 2 can
be used to show that each tableau rule generates a finite tableau. Then, by
completeness, we have that for all formulas ϕ, all closed tableaux for ϕ are
finite. Then, consider a procedure that enumerates all pairs (ϕ, T ) such that T
is a closed tableau. For each pair, the procedure verifies if T is a tableau for ¬ϕ.
When the checking is finished, it generates another pair and performs another
round of checking, and so on ad infinitum.



58 P. Balbiani et al.

6 Related Work and Discussion

We considered versions of PAL where the underlying epistemic logic obeys com-
bination of principles T, 4 and 5. We did not consider the axiom D (Kaϕ →
¬Ka¬ϕ) alone, i.e., epistemic logics such as KD and KD45. The reason is that
in both systems the axiom T (Kaϕ → ϕ) is derivable for any boolean formula
ϕ. To see this, note that if we have axiom D, then (Kaϕ∧¬ϕ) → 〈¬ϕ〉⊥ is valid
for any boolean formula ϕ.

Recently, another tableau method for S5-PAL was proposed by [15]. Apart
from some aesthetic differences, this method is very similar to ours. However,
no proof of decidability is provided.

Our Strategy 2 is based on the optimal strategy for EL presented in [12].
Note however that instead of our rule 5↑, Halpern and Moses use a rule that
propagates all formulas prefixed by Ka and K̂a operators to the a-successors.
As this rule alone is not complete for S5, they also need to saturate the nodes
under sub-formulas (which is called full propositional tableau). But note that
such a rule would not be sound in our setting. For example, suppose that in
node s with label L(s) we have that (ψ,¬Kaϕ) ∈ Λs. Because it may be the
case that Λs also contains (ε,¬ψ), we cannot add neither (ψ, ϕ) nor (ψ,¬ϕ) to
Λs at the risk of making it blatantly inconsistent. Then, we cannot have our
set of formulas saturated under sub-formulas in this way. An optimal strategy
for S4-PAL seems to be impossible too. An example is the formula ¬Kap0 ∧
Ka[q1]Kap1 ∧Ka[q2]Kap2 ∧ · · · ∧ Ka[qi]Kapi, for which Strategy 2 generates a
tree containing a branch with 2i different a-successors.

7 Conclusion

We provided a proof system for PAL with and without positive introspection
that avoids translation to other languages as done by [9]. It also extends to
APAL.

As mentioned before, proof systems for DELs are usually built from reduction
axioms. In all cases, the dynamic operators can be eliminated and the formula is
translated into a simpler language. However, the price is an exponentially larger
formula to be evaluated. As proved here and also in [9], there are cases where
this price is not mandatory. Therefore, one of the raised questions is whether
direct methods, like the method presented here, can be also applied to the other
languages. In this direction, we intend to consider some “natural” extensions to
our approach. For instance, PAL with common knowledge.

Acknowledgements

Hans van Ditmarsch appreciates support from the NIAS (Netherlands Institute
for Advanced Study in the Humanities and Social Sciences) project ‘Games, Ac-
tion, and Social Software’ and the NWO (Netherlands Organisation for Scientific
Research) Cognition Program for the Advanced Studies grant NWO 051-04-120.



A Tableau Method for Public Announcement Logics 59

Tiago de Lima is supported by the Programme Alßan, the European Union
Programme of High Level Scholarships for Latin America, scholarship number
E04D041703BR.

All the authors thank the anonymous reviewers for their useful comments.

References

1. Plaza, J.: Logics of public communications. In: Emrich, M.L., Hadzikadic, M.,
Pfeifer, M.S., Ras, Z.W. (eds.) Proceedings of ISMIS 1989, pp. 201–216 (1989)

2. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. Technical Report SEN-R9922, Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands (1999)

3. Gerbrandy, J.: Bisimulations on Planet Kripke. PhD thesis, University of Amster-
dam, Amsterdam, The Netherlands (1999)

4. Kooi, B.: Expressivity and completeness for public update logic via reduction ax-
ioms. Journal of Applied Non-Classical Logics (to appear, 2007)

5. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change.
Information and Computation 204(11), 1620–1662 (2006)

6. van Ditmarsch, H., Kooi, B.: The secret of my success. Synthese 151, 201–232
(2006)

7. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Playing cards with Hintikka.
Australasian Journal of Logic 3, 108–134 (2005)

8. Herzig, A., De Lima, T.: Epistemic actions and ontic actions: A unified logical
framework. In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds.) IBERAMIA 2006
and SBIA 2006. LNCS (LNAI), vol. 4140, pp. 409–418. Springer, Heidelberg (2006)

9. Lutz, C.: Complexity and succintness of public announcement logic. In: Stone, P.,
Weiss, G. (eds.) Proceedings of AAMAS, 137–144 (2006)

10. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.:
What can we achieve by arbitrary announcements? A dynamic take on Fitch’s
knowability. In: Proceedings of TARK (to appear, 2007)

11. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel Publishing
Company (1983)

12. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence 54, 311–379 (1992)

13. Smullyan, R.M.: First-Order Logic. Springer-Verlag (1968)
14. Letz, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,

Gabbay, D., Hähnle, R., Possega, J. (eds.) Handbook of Tableau Methods, Kluwer
Academic Publishers, Boston (1999)

15. de Boer, M.: Praktische bewijzen in public announcement logica (Practical proofs in
public announcement logic). Master’s thesis, Department of Artificial Intelligence,
University of Groningen, in Dutch (2006)



Bounded Model Checking with Description Logic
Reasoning

Shoham Ben-David, Richard Trefler, and Grant Weddell

David R. Cheriton School of Computer Science
University of Waterloo

Abstract. Model checking is a technique for verifying that a finite-state concur-
rent system is correct with respect to its specification. In bounded model check-
ing (BMC), the system is unfolded until a given depth, and translated into a CNF
formula. A SAT solver is then applied to the CNF formula, to find a satisfying
assignment. Such a satisfying assignment, if found, demonstrates an error in the
model of the concurrent system.

Description Logic (DL) is a family of knowledge representation formalisms,
for which reasoning is based on tableaux techniques. We show how Description
Logic can serve as a natural setting for representing and solving a BMC problem.
We formulate a bounded model checking problem as a consistency problem in
the DL dialect ALCI. Our formulation results in a compact representation of
the model, one that is linear in the size of the model description, and does not
involve any unfolding of the model. Experimental results, using the DL reasoner
FaCT++, significantly improve on a previous approach that used DL reasoning
for model checking.

1 Introduction

Model checking ([7,20], c.f.[8]) is a technique for verifying finite-state concurrent sys-
tems, that has been proven to be very effective in the verification of hardware and soft-
ware programs. In model checking, a modelM , given as a set of state variables V and
their next-state relations, is verified against a temporal logic formula ϕ. Essentially, ver-
ification of the formula ϕ on a modelM , checks that the tree of all computations ofM
satisfies ϕ.

The main challenge in model checking is known as the state space explosion prob-
lem, where the number of states in the model grows exponentially in the number of
variables describing it. To cope with this problem, model checking is done symboli-
cally, by representing the system under verification as sets of states and transitions, and
by using Boolean functions to manipulate those sets. Two main symbolic methods are
used to perform model checking. The first, known as SMV [16], is based on Binary
Decision Diagrams (BDDs) [5] for representing the state space as well as for perform-
ing the model checking procedure. The second is known as Bounded Model Checking
(BMC) [4]. Using this method, the model under verification is unfolded k times (for a
given bound k), and translated into a propositional CNF formula. A SAT solver is then
applied to the formula, to find a satisfying assignment. Such an assignment, if found,
demonstrates an error in the model.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 60–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Bounded Model Checking with Description Logic Reasoning 61

Description Logic (DL) ([1]) is a family of knowledge representation formalisms
mainly used for specifying ontologies for information systems. An ontology T is called
a terminology or more simply a Tbox, and corresponds to a set of concept inclusion
dependencies. Each inclusion dependency has the form C1  C2, and asserts contain-
ment properties of relevant concepts in an underlying domain, e.g., that managers are
included in employees

MANAGER  EMPOYEE,

and also in those things that hire only employees

MANAGER  ∀hires.EMPLOYEE.

In this latter case, hires is an example of a role. In DLs, a role is always a binary relation
over the underlying domain.

The main reasoning service provided by a DL system is concept consistency, that is,
for a given terminologyT and concept C, to determine if there is a non-empty interpreta-

tion of the concept that also satisfies each inclusion dependency in T , written T |=dl C.
Most DL systems implement this service by employing some form of tableaux or model
building techniques. The examples illustrate that these techniques manifest both propo-
sitional and modal reasoning (where hires is viewed as an event), which makes using a
DL system an attractive possibility for model checking.

To explore this, we consider a goal directed embedding of BMC problems as concept
consistency problems in the DL dialectALCI. Our encoding of a model description as
a terminology in ALCI results in a natural symbolic representation of the sets of states
and state transitions. Specifically, given a model description MD and a bound k, we
formulate a BMC problem as a terminology T k

MD overALCI. Our formulation is com-
pact, and does not involve unfolding of the model. Rather, the size of the terminology
is the same as the size of the description of the model plus a set of k concept inclu-
sions that are needed for the bounded verification. In contrast, the known BMC method
that uses a SAT solver for this task needs k copies of the model description. This pro-
duces a representation that is k times larger than ours. For simplicity, we assume the
formula to be verified expresses a safety property (an AG(b) type formula). We note
that a large and useful subset of temporal logic formulas can be translated into AG(b)
type formulas [2].

Let M be a model defined by a set V of Boolean state variables and their next-state
transitions R. We represent each variable vi ∈ V as a concept Vi and the transition
relation as a single role R. We then introduce concept inclusions of the type

C1  ∀R.C2

stating that if the current state satisfies the condition represented by C1, then all the
next-states that can be reached in one step by R, must satisfy the condition C2. Note that
interpretations for this set of concept inclusions correspond to sub-models of the given
modelM .

Let the concept S0 represent the set of initial states ofM . If S1 represents states that
can be reached in one step from S0, then the concept inclusion S1  ∃R−.S0 must
hold (that is, the set S1 is a subset of all the states that can reach S0 by going one



62 S. Ben-David, R. Trefler, and G. Weddell

step backwards using the relation R). Similarly, we denote by Si subsets of the states
reachable in i steps from the set of initial states, and introduce the inclusions

Si  ∃R−.Si−1

for 0 < i ≤ k. Let ϕ = AG(b) be the specification to be verified, and let B be the con-
cept representing b (composed of a Boolean combination of the concepts V representing
the state variables). Model checking is now carried out by asking the query: “does there
exist an interpretation for the above set of concept inclusions, such that Cϕ(= ¬B�Si)
is not empty for some Si?”. A positive answer from the DL reasoner indicates an error
inM .

We relate the consistency of the concept Cϕ with respect to the terminology T k
M to

the satisfaction ofϕ in the modelM , by proving thatMk �|= ϕ if and only if T k
M |=dl Cϕ

is consistent.
Note that this formulation of a model checking problem is goal directed. That is, the

DL reasoner begins from a description of buggy states (¬B � Si), and proceeds from
there to find a legal backward path to a description of initial states. In earlier preliminary
work using a DL for model checking [4], we explored a synchronous forward reason-
ing approach. In comparison to this earlier approach, our experimental results confirm
that goal directed encodings perform far better, indeed outperforming a BDD-based
technology for the sample safety property considered. However, the combination of our
current encoding and current DL reasoning technology [14] is still not competitive with
SAT-based approaches. We give some suggestions for future work to address this in our
concluding remarks.

The rest of the paper is organized as follows. The next section provides the necessary
background definitions. Our main contributions then follow in Section 3 in which we
formally define our translation and prove its correctness, and we report on some prelim-
inary experimental results. In Section 4 we discuss related work. Summary comments
and conclusions then follow in Section 5.

2 Background and Definitions

2.1 Description Logic

Description Logics [1] come in different dialects. The basic DL dialect is called At-
tributive Language with Complements, or ALC. For our purposes we need the more
expressive dialectALCI, allowing the use of role inverse. Its definition is given below.

Definition 1 (Description Logic ALCI). Let NC and NR be sets of atomic concepts
{A1, A2, . . .} and atomic roles {R1, R2, . . .} respectively. The set of roles R of the
description logic ALCI is the smallest set including NR that satisfies the following.

– If R ∈ R then so is R−.

The set of concepts C of the description logic ALCI is the smallest set including NC
that satisfies the following conditions.

– If C1, C2 ∈ C then so are ¬C1 and C1 � C2.
– If C ∈ C and R ∈ R then ∃R.C ∈ C.



Bounded Model Checking with Description Logic Reasoning 63

Additional concepts are defined as syntactic sugaring of those above:

– � = A � ¬A for some A
– ∀R.C = ¬∃R.¬C
– C1 � C2 = ¬(¬C1 � ¬C2)

An inclusion dependency is an expression of the form C1  C2. A terminology T
consists of a finite set of inclusion dependencies.

The semantics of expressions is defined with respect to a structure I = (ΔI , ·I),
where ΔI is a non-empty set, and ·I is a function mapping every concept to a subset
of ΔI and every role to a subset of ΔI × ΔI such that the following conditions are
satisfied.

– (R−)I = {(x, y) ∈ ΔI ×ΔI | (y, x) ∈ RI }
– (¬C)I = ΔI \CI

– (C1 � C2)I = CI
1 � CI

2

– ∃R.C = {x ∈ ΔI | ∃y ∈ ΔI s.t. (x, y) ∈ RI ∧ y ∈ CI}

A structure satisfies an inclusion dependency C1  C2 if CI
1 ⊆ CI

2 . The consistency

problem for ALCI asks if T |=dl C holds1, that is, if there exists I such that CI is
non-empty and such that CI

1 ⊆ CI
2 holds for each C1  C2 in T .

2.2 Symbolic Model Checking

Definition 2 (Kripke Structure). Let V be a set of Boolean variables. A Kripke struc-
tureM over V is a four tupleM = (S, I,R, L), where

1. S is a finite set of states.
2. I ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total, that is, for every state s ∈ S

there is a state s′ ∈ S such that R(s, s′).
4. L : S → 2V is a function that labels each state with the set of variables true in that

state.

We view each state s as a truth assignment to the variables V . We view a set of states as
a Boolean function over V characterizing the set. Thus, if a state s belongs to a set S0,
we write s |= S0. Similarly, if vi ∈ L(s) we write s |= vi, and if vi �∈ L(s) we write
s |= ¬vi. We say that w = s0, s1, ..., sk is a path inM if ∀i, 0 ≤ i < k, (si, si+1) ∈ R
and s0 |= I .

In practice, the full Kripke structure of a system is not explicitly given. Rather, a
model is given as a set of Boolean variables V = {v1, ..., vn}, their initial values and
their next-state assignments. The definition we give below is an abstraction of the input
language of SMV [16].

Definition 3 (Model Description). Let V = {v1, ..., vn} be a set of Boolean variables.
A tuple MD = (IMD , [〈c1, c′1〉, ..., 〈cn, c′n〉]) is a Model Description over V where
IMD, ci, c′i are Boolean expressions over V .

1 We write “|=dl” to distinguish the use of the double turnstyle symbol by both description logic
and model checking communities.



64 S. Ben-David, R. Trefler, and G. Weddell

The semantics of a model description is a Kripke structure MMD = (S, IM , R, L),
where S = 2V , L(s) = s, IM = {s|s |= IMD}, andR = {(s, s′) : ∀1 ≤ i ≤ n, s |= ci
implies s′ |= ¬vi and s |= c′i ∧ ¬ci implies s′ |= vi}.

Intuitively, a pair 〈ci, c′i〉 defines the next-state assignment of variable vi in terms of
the current values of {v1, ..., vn}. That is,

next(vi) =

⎧
⎨

⎩

0 if ci
1 if c′i ∧ ¬ci
{0, 1} otherwise

where the assignment {0, 1} indicates that for every possible next-state value of vari-
ables v1, ...vi−1, vi+1, ..., vn there must exist a next-state with vi = 1, and a next-state
with vi = 0.

Safety Formulas. The formulas we consider are safety formulas, given as AG(b) in
CTL [7], orG(b) in LTL [19]. Such formulas state that the Boolean expression b holds
on all reachable states of the model under verification. We note that a large and useful
subset of CTL and LTL can be translated into AG(b) type formulas [2].

Bounded Model Checking. Given a Kripke structureM , a formula ϕ, and a bound k,
Bounded Model Checking (BMC) tries to refuteM |= ϕ by proving the existence of a
witness to the negation of ϕ, of length k or less. For ϕ = AG(b) we say thatMk �|= ϕ
if and only if there exists a path w = s0, ..., sj , such that j ≤ k and sj |= ¬b.

The original BMC method [4] generates a propositional formula that is satisfiable if
and only ifMk �|= ϕ. We show how to achieve this using Description Logic.

3 Bounded Model Checking Using Description Logic

We give a linear reduction of a bounded model checking problem into a consistency
check over ALCI. Our method performs bounded reachability on the given model,
and thus resembles the BMC [4] method. However, classical BMC methods unfold the
model k times (for a bound k), introducing k copies of the state variables, as well as
of the transition relation. Our method in contrast, uses only one copy of each state
variable, and defines reachability of bound k as a set of k concept inclusions. Thus our
method resembles the reachability algorithm performed in BDD-based symbolic model
checking [16]. Our method can therefore be seen as a combination of the two major
approaches currently existing for symbolic model checking.

In the next Section we present the translation into a DL terminology. We demonstrate
the translation using an example in section 3.2, and then prove the correctness of the
translation in Section 3.3. In Section 3.4 we discuss implementation and experimental
results.

3.1 Constructing a Terminology over ALCI

Let MD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description for the model MMD =
(S, I,R, L), over V = {v1, ..., vn}. Let k be the bound and let ϕ be a safety formula.



Bounded Model Checking with Description Logic Reasoning 65

We generate a terminology T k
MD , linear in the size of MD +k, and a conceptCϕ, linear

in the size of ϕ, such that T k
MD |= Cϕ is consistent if and only ifMk

MD �|= ϕ.
For each variable vi ∈ V we introduce one primitive concept Vi, where Vi denotes

vi = 1 and ¬Vi denotes vi = 0. We introduce one primitive role R corresponding to the
transition relation of the model.

We construct the terminology T k
MD as the union of two terminologies: T k

MD =
TMD ∪ Tk, where the terminology TMD depends on the model description, and Tk

depends only on the bound k on the number of cycles searched. The construction of
TMD and Tk are given below.

Constructing TMD . Let MD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description,
where I, ci, c′i are Boolean expressions over the variables V = {v1, ..., vn}. We define
the concept S0 to represent I , by replacing each vi in I with the concept Vi, and the
connectives ∧,∨,¬ with �,�,¬.

Let the pair 〈ci, c′i〉 describe the next state behavior of the variable vi, as shown in
Definition 3. Let Ci be the concept generated by replacing every vi in ci with the con-
cept Vi, and the connectives ∧,∨,¬ with �,�,¬. Let C′

i be the concept corresponding
to c′i in the same way. We introduce the following concept inclusions.

Ci  ∀R.¬Vi

(¬Ci � C′
i)  ∀R.Vi

In total, two concept inclusions are introduced for each variable vi inMD (correspond-
ing to the pair 〈ci, c′i〉).

Constructing Tk. For a bound k, we introduce k primitive concepts, S1, ...,Sk. For
1 ≤ i ≤ k, we introduce k inclusions:

Si  ∃R−.Si−1,

Note that the concept inclusions in Tk are purely syntactic and do not depend on the
model description under verification MD. In fact, the same set of inclusions shall ap-
pear in the verification (of bound k) of any model.

Constructing Cϕ. Let ϕ be the specification to be verified. As mentioned before, we
are concerned with safety formulas, asserting “AG(b)”, with b being a Boolean formula
over the variables v1, ..., vn. To show that such a formula does not hold, it is enough
to find one state s of the Kripke structure, reachable from the initial state, such that
s |= ¬b. We translate the Boolean formula b into a concept B in the usual way, where
each variable vi is translated to the concept Vi, and the Boolean connectives ∨,∧,¬
into their correspondents �,�,¬.

We define the concept Cϕ ≡ ¬B � (S0 � S1 � ... � Sk). If Cϕ is consistent with
respect to the terminology T k

MD = Tk ∪TMD it means that ¬b holds in some state, with
distance less than k from the initial state. Verification is therefore reduced to the query:

T k
MD |=dl Cϕ.



66 S. Ben-David, R. Trefler, and G. Weddell

3.2 Example

Consider the model description

Exmp = (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉])

over V = {v1, v2, v3}with I = ¬v1∧v2∧¬v3. Figure 1 draws the states and transitions
of the Kripke structureMExmp described by Exmp, where the label of each state is the
value of the vector (v1, v2, v3). Let the formula to be verified be ϕ = AG(¬v2 ∨ ¬v3).
Note that MExmp �|= ϕ, as can be seen in Figure 1, since the state (0, 1, 1), that
contradicts ϕ, can be reached in two steps from the initial state. We choose the bound
to be k = 4.

Fig. 1. A Kripke structure for Exmp

In order to build a terminology for Exmp we introduce one primitive role R and three
primitive concepts V1,V2,V3. We first build the terminology TExmp. For the initial
state, represented by the concept S0, we introduce the following concept inclusion:

S0  (¬V1 � V2 � ¬V3)

The rest of TExmp is composed of the transition relation of the model, as given below.

(V1 � V2)  ∀R.¬V1

(¬(V1 � V2) � V3)  ∀R.V1

¬V2  ∀R.¬V2

¬V1  ∀R.¬V3

V1  ∀R.V3

Note that for simplicity, we omitted the inclusion (¬¬V2 � V1 � ¬V1)  ∀R.V2 (corre-
sponding to ¬Ci �C′

i  ∀R.Vi for i = 2 ), since the prefix ¬¬V2 �V1 �¬V1 is actually
equivalent to ⊥. Similarly, the concept ¬¬V1 � V1 (corresponding to ¬C3 � C′

3 ) was
replaced by the equivalent V1.



Bounded Model Checking with Description Logic Reasoning 67

In order to “unfold” the model four times (for the chosen bound k = 4), we introduce
the primitive concepts S1,S2,S3,S4, and the concept inclusions:

S1  ∃R−.S0

S2  ∃R−.S1

S3  ∃R−.S2

S4  ∃R−.S3

For the specification ϕ = AG(¬v2 ∨ ¬v3) we get B ≡ ¬V2 � ¬V3, and Cϕ ≡
¬B� (S0 � S1 � S2 � S3 � S4). Verification is then carried out by asking the query: Is
the concept Cϕ consistent with respect to T 4

Exmp?
In the next section we prove the correctness of our translation.

3.3 Correctness

We relate the consistency of the concept Cϕ with respect to T k
MD to the satisfaction of

ϕ in the modelMMD . Let MD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) denote a model description
for a modelMMD = (S, IM , R, L), and let ϕ = AG(b) be a safety formula. Let T k

MD
be the terminology built for MD, as defined in Section 3.1, and let Cϕ be the concept
representing ϕ.

For the proof of the theorem, we need the following definition and lemma. Let I =
(ΔI , ·I) be an interpretation for T k

MD . We define a function from the elements of I to
states in S in the following way.

Definition 4. F from ΔI to S is a function such that F (σ) = s if ∀1 ≤ i ≤ n, σ ∈ Vi

if and only if s |= vi.

Note that the function F is well defined, since a state s is determined by the value of
the variables v1, ..., vn.

Lemma 5 . Let I = (ΔI , ·I) be an interpretation for T k
MD . Let c be a Boolean expres-

sion over v1, ..., vn, and C its corresponding concept derived by replacing each variable
vi by the concept Vi, and the Boolean connectives ∨,∧,¬ by �,�,¬. Let σ ∈ ΔI be
an element in the interpretation I, and let s = F (σ). Then σ ∈ CI if and only if s |= c.

Proof. By induction on the structure of the Boolean expression c. ��

Theorem 6. Mk
MD �|= ϕ if and only if T k

MD |=dl Cϕ is consistent.

Proof. (=⇒) Assume thatMk
MD �|= ϕ. Then there exists a path inMk

MD ,w = s0, ..., sj ,
where j ≤ k, such that s0 |= I , ∀0 < l ≤ j, (sl−1, sl) ∈ R, and sj |= ¬b. We
build a finite interpretation I = (ΔI , ·I) based on w. The set ΔI includes j + 1
elements σ0, ..., σj . Each of the primitive concepts Vi is interpreted as a set VI

i , such
that ∀0 ≤ l ≤ j, σl ∈ VI

i if and only if sl |= vi. Note that for this interpretation,
F (σl) = sl.

We interpret each primitive concept Sl as {σl} for 0 ≤ l ≤ j. The primitive concepts
Sj+1, ...,Sk are interpreted as ∅. The interpretation RI of the role R is a set of pairs
(σl, σl+1), 0 ≤ l < j. It remains to show that all concept inclusions of T k

MD hold under
this interpretation, and that CI

ϕ, the interpretation of the concept Cϕ is not empty.



68 S. Ben-David, R. Trefler, and G. Weddell

– Inclusions from Tk: For l > j, SI
l = ∅, and are thus included in any other set. In

order for Sl  ∃R−.Sl−1 to hold, for l ≤ j, we need to show that SI
l ⊆ {x ∈

ΔI | ∃y ∈ ΔI s.t. (y, x) ∈ RI ∧ y ∈ SI
l−1}. Indeed, SI

l = {σl},SI
l−1 =

{σl−1}, (σl−1, σl) ∈ RI , and (σl−1, σl) is the only pair (x, y) ∈ RI such that
x ∈ SI

l−1. Thus the inclusion holds.
– Inclusions from TMD : We need to show that inclusions of the type Ci  ∀R.¬Vi

and ¬Ci � C′
i  ∀R.Vi, for 1 ≤ i ≤ n, hold under the interpretation I. We know

that ∀0 < l ≤ j, (sl−1, sl) ∈ R. According to the definition of model description,
it means that ∀0 < i ≤ n, sl−1 |= ci implies sl |= ¬vi and sl−1 |= ¬ci ∧ c′i
implies sl |= vi. By Lemma 5 we get that σl−1 ∈ CI

i implies σl �∈ VI
i and σl−1 ∈

(ΔI \CI
i )∩C′I

i implies σl ∈ VI
i . Since no pairs other than (σl−1, σl) belong to RI

in the interpretation I, the inclusions hold.
– CI

ϕ is not empty: We shall show that σj ∈ CI
ϕ. Recall that

Cϕ ≡ ¬B � (S0 � S1 � ... � Sk)

and therefore under the interpretation I,

CI
ϕ = (ΔI \ BI) ∩ (SI

0 ∪ SI
1 ∪ ... ∪ SI

k )

Since Sj = {σj}, we get that σj ∈ (SI
0 ∪ SI

1 ∪ ...∪ SI
k ). Since sj |= ¬b, we get by

Lemma 5 that σj �∈ BI . Thus σj ∈ ΔI \ BI , and therefore σj ∈ CI
ϕ.

(⇐=) Let I = (ΔI , ·I) be an interpretation showing that T k
MD |=dl Cϕ is consistent.

We have to show thatMk
MD �|= ϕ. Since CI

ϕ = (ΔI \ BI) ∩ (SI
0 ∪ SI

1 ∪ ... ∪ SI
k ) is not

empty in I, it must be the case that for some j, 0 ≤ j ≤ k, (ΔI \BI)∩SI
j is not empty.

Let σj be an element in (ΔI \ BI) ∩ SI
j . Then σj ∈ (ΔI \ BI) and also σj ∈ SI

j .
Since T k

MD includes the concept inclusion Sj  ∃R−.Sj−1, and SI
j is not empty, we

deduce that SI
j−1 is not empty, and that ∃σj−1 ∈ SI

j−1, such that (σj−1, σj) ∈ RI . By
similar considerations, there must exist a sequence of elements σ0, ..., σj ∈ ΔI , such
that for 0 ≤ l < j, (σl, σl+1) ∈ RI , and σ0 ∈ SI

0 . We define a sequence of states
s0, ..., sj fromMMD according to the function F from Definition 4: F (σl) = sl.

We need to prove that for 0 ≤ l < j, (sl, sl+1) ∈ R, s0 |= I , sj |= ¬b. These follow
easily from Lemma 5 as shown below.

– s0 |= I . Recall that the concept S0 corresponds to the condition I of the model
MMD, which is a Boolean combination of the variables vi. Thus since σ0 ∈ SI

0 we
get by Lemma 5 that s0 |= I .

– sj |= ¬b. As shown above, σj ∈ (ΔI \ BI) and therefore σj �∈ BI . By Lemma 5,
sj �|= b, that is sj |= ¬b.

– (sl, sl+1) ∈ R. Since all concept inclusions of T k
MD hold under the interpretation

I, we know that ∀1 ≤ i ≤ n,
CI

i ⊆ {x ∈ ΔI | ∀y ∈ ΔI , (x, y) ∈ RI → y ∈ ΔI \ Vi} and also
(ΔI \ CI

i ) ∩ C′I
i ⊆ {x ∈ ΔI | ∀y ∈ ΔI , (x, y) ∈ RI → y ∈ Vi}.



Bounded Model Checking with Description Logic Reasoning 69

Thus if σl ∈ CI
i it must be the case that σl+1 �∈ VI

i , and similarly if σl ∈
(¬CI

i ∩ C′I
i ) it must be the case that σl+1 ∈ VI

i . Because of the correspondence
between σl and sl, we have that sl |= ci implies sl+1 |= ¬vi and sl |= c′i ∧ ¬ci
implies sl+1 |= vi. Thus by definition, (sl, sl+1) ∈ R.

This concludes the proof. ��

3.4 Experiments

We implemented our method and experimented with it using the Description Logic
reasoner FACT++ [13]. We present two sets of results. In Table 1 we compare our
method with the one reported in [3], where a different encoding of model checking
in DL is described. The method in [3] applies a forward search, as opposed to the
backward search proposed in this paper. We compare the two methods on a very simple
model, parameterized so we can run it with increasing numbers of state variables. For
the backward method we chose the bound to be 20, although the diameter of the model
is only 3. The safety formula we verified is satisfied in all three models. Table 1 shows
the number of concepts and concept inclusions needed to describe the model for each
method, and the time in seconds it takes to execute. We set a timeout of 1200 seconds.
The results demonstrate that the backward search, described in this paper, significantly
outperforms the forward search approach.

Table 1. Forward vs. backward model checking using DL

Forward Search Backward Search
Model Size concepts inclusions time concepts inclusions time

10 32 104 0.07 22 25 0
20 62 204 > 1200 32 40 0.01
50 152 514 > 1200 62 110 0.02

In Table 2 we present results comparing our method (backward search) with two
other symbolic model checking methods. We used NuSMV [6], version 2.4.1, as a BDD-
based model checker. We used the BMC mode of NuSMV, that invoked zChaff [17]
as a SAT solver for bounded model checking. The model we use for comparison is

Table 2. DL Model Checking Vs. SMV and SAT

Model Size Bound DL-Backward NuSMV zChaff
85 5 4 > 1200 1
85 10 > 1200 > 1200 0.9
272 5 202 > 1200 1.2
272 10 > 1200 > 1200 3.9
425 5 335 > 1200 2.4
425 10 > 1200 > 1200 6.7



70 S. Ben-David, R. Trefler, and G. Weddell

derived from the NuSMV example “dme1-16”, taken from [18] and parameterized to
have different numbers of cells. The formula verified is a safety property that holds
in the model. We did not attempt to optimize the run of any tool (many options are
available), but rather, ran them in their default mode. Although our method performs
better than NuSMV on the given examples, it still falls far behind the performance of
zChaff. In particular, we note that the DL method seems to be very sensitive to the
bound k on the depth of the search.

4 Related Work

A connection between knowledge-based reasoning and model checking has been
explored before. Gottlob et al in [11,12] analyzed the expressive power of Datalog
statements, and compared them to known temporal logics. Sahasrabudhe in [21] has per-
formed model checking of telephony feature interactions by using SQL on an explicit
state representation of the model, and has compared the results with model checking
a similar explicit state representation using the model checker SMV [16]. Both Sa-
hasrabudhe and Gottlob et al however, used an explicit representation of the model, as
opposed to the symbolic representation that we propose. This difference is crucial, since
in many cases the Kripke structure for the model is too big to be built, and symbolic
methods must be used. Dovier and Quintarelli in [10] were interested in the opposite
direction: they translated a knowledge-base into a Kripke structure, and a query into a
temporal logic formula. They then used a model checker to make inferences about the
knowledge-base.

In a previous paper [3] we gave a first formulation of a model checking problem as a
terminology in Description logic. The formulation there has some advantages over the
current: it performs unbounded model checking rather than bounded model checking
that we propose here; it supports safety as well as liveness formulas, and it uses the
simpler dialect ALC, rather than ALCI that we use here. However, the terminology
built for a given model description employs three times as many concepts and five
times as many concept inclusions. In addition, the reasoning involved synchronizing
the progress of the different state variables. Thus the performance of that method, as
shown in Section 3.4, was much worse than the one presented in this paper.

Finally, a compact representation of a BMC problem, with size similar to the one
described in this paper, is also achieved when presenting the model description as a
Quantified Boolean Formula (QBF). Recent activity in this area [9,15] suggest though,
that this too does not perform as well as SAT solvers.

5 Conclusions and Future Work

We have shown how Description Logic can serve as a natural setting for representing
a BMC problem, avoiding the need to unfold the model. Thus for a given model de-
scription MD and a bound k, the size of the representation is |MD| + k, as opposed
to |MD| × k when translating MD to a propositional formula. Experimental results
show a significant improvement over a different method of model checking using DL,
and comparable performance with BDD-based model checking.



Bounded Model Checking with Description Logic Reasoning 71

While performance is still not competitive with the SAT-based approach, we believe
that model checking using DL reasoning merits further research. One future direction is
to better exploit absorption [14]. Absorption is a pre-processing technique that allows
the elimination of some forms of concept inclusions by converting them into augmented
concept definitions. Our current translation into DL does not allow absorption for most
of the concept inclusions.

Acknowledgements

We thank Dmitry Tsarkov for his support in the installation of the FaCT++ Descrip-
tion Logic reasoner. We thank Vlad Ciubotariu for his help in running NuSMV. Finally,
we would like to acknowledge the financial support provided by NSERC of Canada.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook. Cambridge University Press, Cambridge (2003)

2. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas. In:
Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)

3. Ben-David, S., Trefler, R., Weddell, G.: Model checking the basic modalities of CTL with de-
scription logic. In: Proc. International Workshop on Description Logics, pp. 223–230 (2006)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Heidel-
berg (1999)

5. Bryant, R.: Graph-based algorithms for boolean function manipulation. In IEEE Transactions
on Computers, vol. c-35(8) (1986)

6. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model verifier.
In: Computer Aided Verification, pp. 495–499, (July 1999)

7. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching
time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS, vol. 131, Springer,
Heidelberg (1982)

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (2000)
9. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Eighth Interna-

tional Conference on Theory and Applications of Satisfiability Testing, pp. 408–414, (June
2005)

10. Dovier, A., Quintarelli, E.: Model checking based data retrieval. In: Ghelli, G., Grahne, G.
(eds.) DBPL 2001. LNCS, vol. 2397, Springer, Heidelberg (2002)

11. Gottlob, G., Grädel, E., Veith, H.: Linear Time Datalog for Branching Time Logic (chap-
ter 19). In: Minker, J. (ed.) Logic-Based Artificial Intelligence, Kluwer, Boston (2000)

12. Gottlob, G., Grädel, E., Veith, H.: Datalog LITE: a deductive query language with linear time
model checking. Computational Logic 3(1), 42–79 (2002)

13. Horrocks, I.: The FaCT system. Lecture Notes in Computer Science 1397, 307–312 (1998)
14. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc. of the 7th Int.

Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 285–296
(2000)

15. Jussila, T., Biere, A.: Compressing bmc encodings with QBF. In: Fourth International Work-
shop on Bounded Model Checking, pp. 27–39, (August 2006)



72 S. Ben-David, R. Trefler, and G. Weddell

16. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell (1993)
17. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient

sat solver. In: 38th Design Automation Conference, pp. 530–535, (June 2001)
18. NuSMV examples collection, http://nusmv.irst.itc.it/examples/examples.

html
19. Pnueli, A.: The temporal logic of programs. In: 18th IEEE Symposium on Foundation of

Computer Science, pp. 46–57 (1977)
20. Quielle, J., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:

5th International Symposium on Programming (1982)
21. Sahasrabudhe, M.: SQL-based CTL model checking for telephony feature interactions. In: A

Master Thesis, Univesity of Waterloo, Ontario, Canada (2004)

http://nusmv.irst.itc.it/examples/examples.html
http://nusmv.irst.itc.it/examples/examples.html


Tableau Systems for Logics of Subinterval

Structures over Dense Orderings

Davide Bresolin1, Valentin Goranko2, Angelo Montanari3, and Pietro Sala3

1 Department of Computer Science, University of Verona,
Verona, Italy

bresolin@sci.univr.it
2 School of Mathematics, University of the Witwatersrand,

Johannesburg, South Africa
goranko@maths.wits.ac.za

3 Department of Mathematics and Computer Science,
University of Udine, Udine, Italy
{montana,sala}@dimi.uniud.it

Abstract. We construct a sound, complete, and terminating tableau
system for the interval temporal logic D�· interpreted in interval struc-
tures over dense linear orderings endowed with strict subinterval relation
(where both endpoints of the sub-interval are strictly inside the inter-
val). In order to prove the soundness and completeness of our tableau
construction, we introduce a kind of finite pseudo-models for our logic,
called D�· -structures, and show that every formula satisfiable in D�· is
satisfiable in such pseudo-models, thereby proving small-model prop-
erty and decidability in PSPACE of D�· , a result established earlier by
Shapirovsky and Shehtman by means of filtration. We also show how to
extend our results to the interval logic D� interpreted over dense inter-
val structures with proper (irreflexive) subinterval relation, which differs
substantially from D�· and is generally more difficult to analyze. Up to
our knowledge, no complete deductive systems and decidability results
for D� have been proposed in the literature so far.

1 Introduction

Interval-based temporal logics provide a natural framework for temporal repre-
sentation and reasoning. However, while many tableau systems have been devel-
oped for point-based temporal logics, few tableau systems have been constructed
for interval temporal logics [3,6,9], as these are generally more complex. Even
fewer tableau systems for interval logics provide decision procedures – a reflection
of the general phenomenon of undecidability of interval-based temporal logics.
Notable recent exceptions are [4,5,6,7,8].

In this paper we consider interval temporal logics interpreted in interval struc-
tures over dense linear orderings endowed with subinterval relations. These struc-
tures arise quite naturally and appear deceivingly simple, while actually they are
not. Perhaps for that reason they have been studied very little yet, and we are
aware of very few publications containing any representation results, complete

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 73–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



74 D. Bresolin et al.

deductive systems, or decidability results for subinterval structures and logics.
The only known simple case is the logic D
, where the reflexive subinterval
relation is considered, which has been proved to be equivalent to the modal
logic S4 of reflexive and transitive frames when interpreted over dense orderings
in [1]. Neither of the two (irreflexive) cases we take into consideration in this
work reduces to K4. Besides the purely mathematical attraction arising from
the combination of conceptual simplicity with technical challenge, the study of
subinterval structures and logics turns out to be important because they provide,
together with the neighborhood interval logics, the currently most intriguing and
under-explored fragments of Halpern-Shoham’s interval logic HS [10]. They oc-
cupy a region on the very borderline between decidability and undecidability of
propositional interval logics, and since decidability results in that area are pre-
ciously scarce, complete and terminating tableau systems like those constructed
in the paper are of particular interest. (It should be noted that the decidability
results obtained here do not follow from the decidability of the MSO over the ra-
tional order, because the semantics of the considered interval logics is essentially
dyadic second-order).

Here we focus our attention on the logic D�· , corresponding to the case of
strict subinterval relation (where both endpoints of the subinterval are strictly
inside the interval) over the class of dense linear orderings. These subinterval
structures turn out to be intimately related (essentially, interdefinable) with
Minkowski space-time structures. The relations between the logic D�· and the
logic of Minkowski space-time were studied by Shapirovsky and Shehtman in [12].
They established a sound and complete axiomatic system for D�· and proved its
decidability and PSPACE-completeness by means of a non-trivial filtration tech-
nique [11,12]. In this paper, we construct a sound, complete, and terminating
tableau system for D�· . In order to prove the soundness and completeness of
our tableau construction, we introduce a kind of finite pseudo-models for D�· ,
called D�· -structures, and show that every formula satisfiable in D�· is satisfiable
in such pseudo-models, thereby proving small-model property and decidability
in PSPACE of D�· . Moreover, we extend our results to the case of the inter-
val logic D� interpreted in interval structures over dense linear orderings with
proper (irreflexive) subinterval relation, which differs substantially from D�· and
is generally more difficult to analyze. Up to our knowledge, no decidability or
completeness results for deductive systems for that logic have been proposed yet.

2 Syntax and Semantics of D�·

Let D = 〈D,<〉 be a dense linear order. An interval over D is an ordered pair
[b, e], where b < e. We denote the set of all intervals over D by I(D)− (we use
the superscript − to indicate that point-intervals [b, b] are excluded).

We consider three subinterval relations: the reflexive subinterval relation (de-
noted by  ), defined by [dk, dl]  [di, dj ] iff di ≤ dk and dl ≤ dj , the proper
(or irreflexive) subinterval relation (denoted by �), defined by [dk, dl] � [di, dj ]
iff [dk, dl]  [di, dj ] and [dk, dl] �= [di, dj ], and the strict subinterval relation



Tableau Systems for Logics of Subinterval Structures over Dense Orderings 75

(denoted by �· ), defined by [dk, dl]�· [di, dj ] iff di < dk and dl < dj . In this paper
we will only deal with the latter two cases, beginning with �· .

The language of the modal logic D�· of interval structures with strict subin-
terval relation consists of a set AP of propositional letters, the propositional
connectives ¬ and ∨, and the modal operator 〈D〉. The other propositional con-
nectives, as well as the logical constants � (true) and ⊥ (false) and the dual
modal operator [D], are defined as usual. The formulae of D�· are defined as
usual: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈D〉ϕ.

The semantics of D�· is given in interval models M− = 〈I(D)−,�· ,V〉. The
valuation function V : AP �→ 2I(D)−

assigns to every propositional variable p
the set of intervals V(p) over which p holds1. The semantics of D�· is recursively
defined by the satisfiability relation � as follows:

– for every propositional variable p ∈ AP , M−, [di, dj ] � p iff [di, dj ] ∈ V(p);
– M−, [di, dj ] � ¬ψ iff M−, [di, dj ] �� ψ;
– M−, [di, dj ] � ψ1 ∨ ψ2 iff M−, [di, dj ] � ψ1 or M−, [di, dj ] � ψ2;
– M−, [di, dj ] � 〈D〉ψ iff ∃[dk, dl] ∈ I(D)− such that [dk, dl]�· [di, dj ] and

M−, [dk, dl] � ψ.

A D�· -formula is D�· -satisfiable if it is true in some interval in some interval
model and it is D�· -valid if it is true in every interval in every interval model.
The logic D� has the same language as D�· , but it is interpreted in irreflexive
interval models M− = 〈I(D)−,�,V〉.

In [12] a logic L1 was considered and completely axiomatized as follows:

L1 = K4 + ��+ �p1 ∧�p2 → �(�p1 ∧�p2).

That logic was shown in [12] to be essentially the logic of the strict subinterval
structure over the rational ordering (Q, <). In the next section we show that the
latter coincides with the logic D�· , and therefore D�· and L1 turn out to be the
same.

3 Structures for D�·

To devise a decision procedure for D�· , we first interpret it over a special class of
graphs, that we call D�· -graphs. We will prove that a D�· -formula is satisfiable
in a dense interval structure if and only if it is satisfiable in a model over a
D�· -graph. Furthermore, it will turn out that this is equivalent to satisfiability
in an interval structure over the interval [0, 1] of the rational line.

We begin by introducing the key notion of ϕ-atom and the relationDϕ connect-
ing ϕ-atoms. Given a D�· -formula ϕ, let CL(ϕ) be the closure of ϕ, defined as the
set of all sub-formulae of ϕ and their negations. A ϕ-atom is defined as follows.
1 We emphasize that formulae are evaluated only relative to intervals and not to points.

Thus, intervals are regarded as primitive entities and the formulae only express
properties of intervals and their subintervals. In particular, no assumptions are made
relating truth of an atomic formula at an interval to its truth at subintervals of that
interval.



76 D. Bresolin et al.

Definition 1. Given a D�· -formula ϕ, a ϕ-atom A is a subset of CL(ϕ) such
that (i) for every ψ ∈ CL(ϕ), ψ ∈ A if and only if ¬ψ �∈ A and (ii) for every
ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A if and only if ψ1 ∈ A or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ.

Definition 2. Let Dϕ be a binary relation over Aϕ such that, for every pair of
ϕ-atoms A,A′ ∈ Aϕ, ADϕ A

′ holds if and only if ψ ∈ A′ and [D]ψ ∈ A′ for
every formula [D]ψ ∈ A.

A ϕ-atom A is reflexive if ADϕA holds, otherwise it is irreflexive.

When ϕ is clear from the context, ϕ-atoms will be called simply ‘atoms’.
Given a directed graph G = 〈V,E〉, a vertex v ∈ V is reflexive if the edge

(v, v) belongs to E, otherwise v is an irreflexive vertex.

Definition 3. A finite directed graph G = 〈V,E〉 is a D�· -graph if (and only if)
the following conditions hold:
1. there exists an irreflexive vertex v0 ∈ V , called the root of G, such that any

other vertex v ∈ V is reachable from it;
2. every irreflexive vertex v ∈ V has a unique successor vD, which is reflexive;
3. every successor of a reflexive vertex v, different from v, is irreflexive.

A D�· -graph is depicted in Figure 1. D�· -graphs are finite by definition, but they
may include loops involving irreflexive vertices.

Fig. 1. An example of D�· -graph

A D�· -structure is a D�· -graph paired with a labeling function that assigns an
atom to every vertex in the graph. It is formally defined as follows.

Definition 4. A D�· -structure is a pair S = 〈〈V,E〉,L〉 where 〈V,E〉 is a D�· -
graph and L : V → Aϕ is a labeling function that assigns to every vertex v ∈ V
an atom L(v) such that L(v)Dϕ L(v′) for every edge (v, v′) ∈ E. Let v0 be the
root of 〈V,E〉. If ϕ ∈ L(v0), we say that S is a D�· -structure for ϕ.

D�· -structures can be viewed as ‘pseudo-models’ for D�· . Formulae devoid of
temporal operators are satisfied by the definition of ϕ-atom; moreover, [D]-
formulae are satisfied by the definition of Dϕ. To guarantee the satisfiability
of 〈D〉-formulae, we introduce the notion of fulfilling D�· -structures.



Tableau Systems for Logics of Subinterval Structures over Dense Orderings 77

Definition 5. A D�· -structure S = 〈〈V,E〉,L〉 is fulfilling if and only if for
every vertex v ∈ V and every formula 〈D〉ψ ∈ L(v), there exists a descendant
(i.e., vertex reachable by a path of successors) v′ of v such that ψ ∈ L(v′).

Theorem 1. Let ϕ be a D�· -formula which is satisfied in a dense interval model.
Then, there exists a fulfilling D�· -structure S = 〈〈V,E〉,L〉 such that ϕ ∈ L(v0),
where v0 is the root of 〈V,E〉.

Proof. Let M = 〈I(D)−,�· ,V〉 be a dense interval model and let [b0, e0] ∈ I(D)−

be an interval such that M, [b0, e0] � ϕ. We recursively build a fulfilling D�· -
structure S = 〈〈V,E〉,L〉 for ϕ as follows.

We start with the one-node graph 〈{v0}, ∅〉 and the labeling function L such
that L(v0) = {ψ ∈ CL(ϕ) : M, [b0, e0] � ψ}.

Next, for every formula 〈D〉ψ ∈ L(v0) we pick up an interval [bψ, eψ] such
that [bψ, eψ]�· [b0, e0] and M, [bψ, eψ] � ψ; it exists by definition of L(v0).

Then, since D is a dense ordering and CL(ϕ) is a finite set of formulae, we
can find two intervals [b1, e1] and [b2, e2] such that:

– [b2, e2]�· [b1, e1]�· [b0, e0];
– for every 〈D〉ψ ∈ L(v0), [bψ, eψ]�· [b2, e2];
– [b1, e1] and [b2, e2] satisfy the same formulae of CL(ϕ).

Since M is a model and [bψ, eψ]�· [b2, e2] for every interval [bψ, eψ], [b2, e2] satisfies
〈D〉ψ for every 〈D〉ψ ∈ L(v0). Moreover, since [b1, e1] and [b2, e2] satisfy the same
formulae of CL(ϕ) and [b2, e2]�· [b1, e1], for every [D]ψ ∈ CL(ϕ), if [b2, e2] satisfies
[D]ψ, then it satisfies ψ as well.

Accordingly, we add a new (reflexive) vertex vD and the edges (v0, vD) and
(vD, vD) to the graph and we label vD by L(vD) = {ξ ∈ CL(ϕ) : M, [b2, e2] � ξ}.
Furthermore, for every interval [bψ, eψ], we add a new (irreflexive) vertex vψ ,
together with the edge (vD, vψ) ∈ E, and we label it by L(vψ) = {ξ ∈ CL(ϕ) :
M, [bψ, eψ] � ξ}. Finally, to obtain a D�· -structure for ϕ, we recursively apply
the above construction to the vertices vψ1 , . . . , vψk

.
To keep the construction finite, whenever the above procedure requests us

to introduce a successor v′ of a reflexive (resp., irreflexive) node v ∈ V , but
there exists an irreflexive (resp., reflexive) node w ∈ V such that L(w) = L(v′),
we replace the addition of the node v′ with the addition of an edge from v
to w. Since the set of atoms is finite, this guarantees the termination of the
construction process. ��

Now, let S be a fulfilling D�· -structure for a formula ϕ. We will prove that ϕ
is satisfiable in a dense interval structure. Moreover, we will show that such a
structure can be constructed on the interval [0, 1] of the rational line. To begin
with, we define a function fS connecting intervals in I([0, 1])− with vertices in
S. Such a function will allow us to define a model for ϕ.

Definition 6. Let S=〈〈V,E〉,L〉 be a D�· -structure. The function fS : I([0, 1])−

�→ V is recursively defined as follows:



78 D. Bresolin et al.

– fS([0, 1]) = v0;
– let [b, e] be an interval such that fS([b, e]) = v and fS has not yet been

defined for any subinterval of [b, e]. Let vD be the unique reflexive successor of v
if v is irreflexive, and let vD = v otherwise. There are two alternatives:
1. vD has no successors other than itself. In such a case, we put fS([b′, e′])

= vD for every proper subinterval [b′, e′] of [b, e].
2. vD has at least one successor different from itself. Let v1D, . . . , v

k
D be the

successors of vD different from vD. We consider the intervals defined by the
points b, b + p, b + 2p . . . , b + 2kp, b + (2k + 1)p = e, with p = e−b

2k+1 . The
function fS over such intervals is defined as follows:
• for every i = 1, . . . , k, we put fS([b+ (2i− 1)p, b+ 2ip]) = vi

D.
• for every i = 0, . . . , k, we put fS([b+ 2ip, b+ (2i+ 1)p]) = vD.

We complete the construction by putting fS([b′, e′]) = vD for every subin-
terval [b′, e′] of [b, e] which is not a subinterval of any of the intervals [b +
ip, b+ (i+ 1)p]. The resulting structure is depicted below.

v

vD

vD vD vDv1
D v2

D
vD vDvk

D

· · · · · · · · ·

It is easy to show that fS satisfies the following properties.

Lemma 1
1. For every pair of intervals [b, e], [b′, e′] ∈ I([0, 1])− such that [b′, e′]�· [b, e],
fS([b′, e′]) is reachable from fS([b, e]).

2. For every interval [b, e] ∈ I([0, 1])−, if fS([b, e]) = v and v′ is reachable from
v, then there exists [b′, e′]�· [b, e] such that fS([b′, e′]) = v′.

Remark 1. The lemma above means that the mapping fS defined above is a
bounded morphism from I([0, 1])− to (in fact, onto) V , and the theorem below
follows from a general result in modal logic stating truth-preservation under
bounded morphisms, see e.g. [2]. However, since we do not regard D�· -structures
a standard models for our logic, we will not make use of this reference, but will
give a direct proof instead.

For any fulfilling D�· -structure S for ϕ, let MS be the triplet 〈I([0, 1])−,�· ,V〉,
where V(p) = {[b, e] : p ∈ L(fS([b, e]))} for every p ∈ AP . It turns out that MS

is a model for ϕ.

Theorem 2. Let S be a fulfilling D�· -structure for ϕ. Then MS, [0, 1] � ϕ.

Proof. We prove that for every interval [b, e] ∈ I([0, 1])− and every formula
ψ ∈ CL(ϕ), MS, [b, e] � ψ if and only if ψ ∈ L(fS([b, e]). The proof is by
induction on the structure of the formula:

– the case of propositional letters as well as those of Boolean connectives are
straightforward and thus omitted;

– let ψ = 〈D〉ξ, and suppose that ψ ∈ L(fS([b, e])). Since S is fulfilling, there
exists a vertex v′, which is reachable from fS([b, e]), such that ξ ∈ L(v′).



Tableau Systems for Logics of Subinterval Structures over Dense Orderings 79

By Lemma 1, there exists [b′, e′]�· [b, e] such that fS([b′, e′]) = v′. By the
inductive hypothesis, MS, [b′, e′] � ξ and thus MS, [b, e] � 〈D〉ξ.

To prove the converse implication, suppose for reductio ad absurdum that
MS, [b, e] � 〈D〉ξ but 〈D〉ξ �∈ L(fS([b, e])). By the definition of ϕ-atom, this
implies that [D]¬ξ ∈ L(fS([b, e])). Thus, by Lemma 1, we have that, for
every [b′, e′]�· [b, e], ¬ψ ∈ L(fS([b′, e′]). By the inductive hypothesis, this
implies that MS, [b′, e′] � ξ for every [b′, e′]�· [b, e], which is a contradiction.

Let v0 be the root of S. Since ϕ ∈ L(v0) and fS([0, 1]) = v0, it immediately
follows that MS, [0, 1] � ϕ. ��

4 A Small-Model Theorem for D�· -Structures

In this section we prove a small-model theorem for D�· , that is, we will show that
a D�· -formula is satisfiable if and only if there exists a fulfilling D�· -structure of
bounded size. To this end, we introduce the following two measurements for D�· -
graph: (i) the breadth of a D�· -graph, which is the maximum number of outgoing
edges of a vertex, and (ii) the depth of a D�· -graph, which the maximum length
of a simple path of vertices (i.e., a path with no repetition of vertices).

We will show that a D�· -formula is satisfiable if and only if there exists a
fulfilling D�· -structure whose breadth and the depth are linear in the size of
the formula. In order to make the proofs easier to understand we provide the
following definition.

Definition 7. Given a D�· -formula ϕ and a ϕ-atom A ∈ Aϕ, the set of tempo-
ral requests of A is REQ(A) = {〈D〉ψ ∈ CL(ϕ) : 〈D〉ψ ∈ A}.

Notice that REQ(A) identifies all temporal formulae in A: if 〈D〉ψ /∈ REQ(A),
then [D]¬ψ ∈ A (by definition of ϕ-atom). We denote by REQϕ the set of all
〈D〉-formulae in CL(ϕ).

Theorem 3. For every satisfiable D�· -formula ϕ, there exists a fulfilling D�· -
structure whose breadth and depth are bounded by 2 · |ϕ|.

Proof. Let S = 〈〈V,E〉,L〉 be a fulfilling D�· -structure for ϕ. The following
algorithm builds a fulfilling D�· -structure S′ = 〈〈V ′, E′〉,L′〉 for ϕ with the
required property.

Initialization. Initialize S′ as the one-vertex D�· -structure 〈〈{v0}, ∅〉,L′〉, where
v0 is the root of S and L′(v0) = L(v0). Call the procedure Expansion(v0).

Expansion(v). If v is irreflexive, execute Step 1 ; otherwise, execute Step 2.
Step 1. Let v′ be unique reflexive successor of v in S. Add v′ to V ′ and

(v, v′), (v′, v′) to E′; moreover, put L′(v′) = L(v′). Call Expansion(v′).
Step 2. Let REQ(L′(v)) = {〈D〉ψ1, . . . , 〈D〉ψk}. Since S is fulfilling, for

every formula 〈D〉ψi ∈ REQ(L′(v)), there exists a descendant vi of v in
S such that ψi ∈ L(vi). For i = 1 . . . , k, add vi to V ′ and (v, vi) to E′;
moreover, put L′(vi) = L(vi). Next, for every vi such that REQ(L′(vi)) =



80 D. Bresolin et al.

REQ(L′(v)), add an edge (vi, v) to E′. For the remaining vertices vi, it
holds that REQ(L′(vi)) ⊂ REQ(L′(v)), because every [D]-formula in
L′(v) also belongs to L′(vi) and there exists at least one ψj such that
〈D〉ψj ∈ REQ(L′(v)) and [D]¬ψj ∈ REQ(L′(vi)). For every vertex vi in
this latter set, call Expansion(vi).

This algorithm terminates because it calls the Expansion procedure on every
vertex in V at most once. Moreover, it follows immediately from the construction
that it produces a fulfilling D�· -structure S′ for ϕ. To prove that both the breadth
and the depth of S′ are less than or equal to 2 · |ϕ|, it suffices to observe that:

– every irreflexive vertex has exactly one outgoing edge;
– the number of outgoing edges of reflexive vertices is bounded by the number

of 〈D〉-formulae in CL(ϕ), not exceeding the size of the formula;
– in Step 2, the procedure Expansion is called only on those vertices vi such

that REQ(L′(vi)) ⊂ REQ(L′(v)). It follows that at every step the number
of 〈D〉-formulae strictly decreases. As a consequence, we have that every
simple path in S′ contains at most |ϕ| different irreflexive vertices. Since in
every simple path reflexive and irreflexive vertices alternate, the depth of
the D�· -structure is bounded by 2 · |ϕ|. ��

Given a formula ϕ, let n be the number of 〈D〉-formulae in CL(ϕ). It follows from
Theorem 3 that there is a fulfilling D�· -structure for ϕ whose simple vertex paths
v0, ..., vk, starting from the root, have length at most 2n. Taking advantage of
Theorem 1 and Theorem 2, a PSPACE non-deterministic algorithm D�· -sat for
checking the satisfiability of a D�· -formula ϕ can be easily obtained as follows. It
non-deterministically generates a ϕ-atom A containing ϕ and calls a procedure
D�· -step on it. Such a procedure non-deterministically generates a reflexive ϕ-
atom A′ such that A Dϕ A

′ and REQ(A′) = REQ(A), if there is such atom;
otherwise it returns ‘NO’ and halts. Next, for all 〈D〉ψ ∈ REQ(A′), it non-
deterministically generates a ϕ-atom A′′ such that A′ Dϕ A

′′ and ψ ∈ A′′, if
there is such atom; otherwise it returns ‘NO’ and halts. Finally, if REQ(A′′) �=
REQ(A′), then it executes a recursive call on A′′. D�· -sat fails and returns ‘NO’
whenever an atom with the requested properties cannot be generated, and it
returns ‘YES’ if and only if there exists a fulfilling D�· -structure for ϕ. It does
not exceed polynomial space because the number of nested calls of D�· -step
is bounded by O(n) (the maximum length of a simple path) and every call
needs O(n) memory space for local operations. In [11] Shapirovsky proved the
PSPACE-hardness of D�· by providing a reduction of the validity problem for
prenex quantified boolean formulae, that is known to be PSPACE-complete, to
the satisfiability problem for D�· .

5 A Tableau Method for D�·

In the previous section we proved that a D�· -formula is satisfiable iff it is fulfilled
by an effectively constructed D�· -structure of a suitably bounded size. We will



Tableau Systems for Logics of Subinterval Structures over Dense Orderings 81

use that construction here to design a sound, complete, and terminating tableau
method for D�· .

A tableau for a D�· -formula ϕ is a finite, tree-like graph, in which every node
is a subset of CL(ϕ). Nodes are grouped into macronodes, that is, finite subtrees
of the tableau, dealt with by the expansion rules. Branching inside a macronode
corresponds to disjunctions. Macronodes and edges connecting them represent
vertices and edges in the D�· -structure for ϕ. We distinguish two types of rules:
local rules, that generate new nodes belonging to the same macronode, and global
rules, that generate new nodes belonging to new macronodes.

Given two nodes n and n′ such that n′ is a descendant of n, we say that n′

is a local descendant of n (or, equivalently, that n is a local ancestor of n′) if n
and n′ belong to the same macronode and that n′ is a global descendant of n (n
is a global ancestor of n′) if n and n′ belong to different macronodes.

Local Rules:

(NOT)
¬¬ψ, F
ψ, F

(OR)
ψ1 ∨ ψ2, F

ψ1, F | ψ2, F
(AND)

¬(ψ1 ∨ ψ2), F
¬ψ1,¬ψ2, F

(REFL)
[D]ψ, F
ψ, [D]ψ, F

where ψ does not occur in any local ancestor
of the node

Global Rules:

(2-DENS)
[D]ψ1, . . . , [D]ψm, 〈D〉ϕ1, . . . , 〈D〉ϕn, F

ψ1, . . . , ψm, [D]ψ1, . . . , [D]ψm, 〈D〉ϕ1, . . . , 〈D〉ϕn

where m,n ≥ 0 and F contains no temporal formulae;

(STEP)
[D]ψ1, . . . , [D]ψm, 〈D〉ϕ1, . . . , 〈D〉ϕn, F

G1 | . . . | Gn

where m ≥ 0, n > 0, F contains no temporal formulae and, for
every i = 1, . . . , n, Gi = {ϕi, ψ1, . . . , ψm, [D]ψ1, . . . , [D]ψm}

Reflexive and irreflexive macronodes. As the vertices of a D�· -graph,
macronodes can be either reflexive or irreflexive. A macronode is irreflexive if
(i) it contains the initial node of the tableau, or (ii) it has been created by an
application of the STEP rule. In the other cases, viz., when the macronode has
been created by an application of the 2-DENS rule, it is reflexive. A node of the
tableau is reflexive (resp., irreflexive) if it belongs to a reflexive (resp., irreflexive)
macronode.

Expansion strategy. Given a formula ϕ, the tableau for ϕ is obtained from
the one-node initial tableau {ϕ} by recursively applying the following expansion
strategy, until it cannot be applied anymore:

1. do not apply the expansion rules to nodes of the tableau containing both ψ
and ¬ψ, for some ψ ∈ CL(ϕ);

2. apply the NOT, OR, and AND rules to both reflexive and irreflexive nodes;



82 D. Bresolin et al.

3. apply the 2-DENS rule to irreflexive nodes;
4. apply the REFL and STEP rules to reflexive nodes;

To keep the construction finite, when the application of the 2-DENS rule
to a node n would generate a new reflexive node such that there exists another
reflexive ancestor node n′ in the tableau with the same set of temporal formulae,
add an edge from n to n′ instead of generating such a new node.

Open and closed tableau. A node n in a tableau T is closed if one of the
following conditions holds: (i) there exists a formula ψ ∈ CL(ϕ) such that
ψ,¬ψ ∈ n; (ii) in the tableau construction, the NOT, OR, AND, 2-DENS, or
REFL rules has been applied to n and all the immediate successors of n are
closed; (iii) in the tableau construction, the STEP rule has been applied to n
and at least one of the immediate successors of n is closed.

A tableau T is closed if its initial node is closed; otherwise, it is open. Fig-
ure 2 depicts a closed tableau for the unsatisfiable formula 〈D〉〈D〉p ∧ 〈D〉q ∧
[D]([D]¬p∨[D]¬q), with boxes representing macronodes (we underlined formulae
to which local rules are applied).

〈D〉〈D〉p ∧ 〈D〉q ∧ [D]([D]¬p ∨ [D]¬q)

〈D〉〈D〉p, 〈D〉q ∧ [D]([D]¬p ∨ [D]¬q)

(AND)

〈D〉〈D〉p, 〈D〉q, [D]([D]¬p ∨ [D]¬q)

(AND)

[D]¬p ∨ [D]¬q, [D]([D]¬p ∨ [D]¬q), 〈D〉〈D〉p, 〈D〉q
(2-DENS)

[D]¬p, [D]([D]¬p ∨ [D]¬q), 〈D〉〈D〉p, 〈D〉q
(OR)

[D]¬q, [D]([D]¬p ∨ [D]¬q), 〈D〉〈D〉p, 〈D〉q
CLOSED

¬p, [D]¬p, [D]([D]¬p ∨ [D]¬q), 〈D〉〈D〉p, 〈D〉q
(REFL)

〈D〉p,¬p, [D]¬p ∨ [D]¬q, [D]¬p, [D]([D]¬p ∨ [D]¬q)

CLOSED

(STEP)

q,¬p, [D]¬p ∨ [D]¬q, [D]¬p, [D]([D]¬p ∨ [D]¬q)

q,¬p, [D]¬p, [D]([D]¬p ∨ [D]¬q)

(OR)

q,¬p, [D]¬q, [D]¬p, [D]([D]¬p ∨ [D]¬q)

¬p, [D]¬p ∨ [D]¬q, [D]¬p, [D]([D]¬p ∨ [D]¬q)

(2-DENS)

¬p,¬q, [D]¬p ∨ [D]¬q, [D]¬p, [D]¬q, [D]([D]¬p ∨ [D]¬q)

(2-DENS)

¬p,¬q, [D]¬p, [D]¬q, [D]([D]¬p ∨ [D]¬q)

(OR)

¬p, [D]¬p, [D]([D]¬p ∨ [D]¬q)

(OR)

¬p, [D]¬p, [D]¬q, [D]([D]¬p ∨ [D]¬q)

¬p,¬q, [D]¬p, [D]¬q, [D]([D]¬p ∨ [D]¬q)

(REFL)

Fig. 2. The tableau for 〈D〉〈D〉p ∧ 〈D〉q ∧ [D]([D]¬p ∨ [D]¬q)

The proposed tableau method terminates because:

– the local rules can be applied only finitely many times to the nodes of a
macronode (the application of the NOT, AND, and OR rules to a node
generates one or two nodes where one of the formulae in the original node
has been replaced by one or two formulae of strictly lower size; moreover, for
any branch in the subtree associated with a macronode and any [D]-formula
in CL(ϕ), the REFL rule can be applied at most one time);



Tableau Systems for Logics of Subinterval Structures over Dense Orderings 83

– the 2-DENS rule generates a new node only when the set of temporal for-
mulae of such a node is different from that of the other reflexive nodes in
the tableau, and thus it can be applied only finitely many times;

– along any branch in the tableau, the applications of the 2-DENS and of
STEP rules alternate.

As for the complexity, we have shown that a formula ϕ is satisfiable if and
only if there exists a D�· -structure for it whose breadth and depth are linear in
|ϕ|. Such a property holds for any tableau T for ϕ as well. Indeed, let n be the
number of 〈D〉-formulae in CL(ϕ). The number of outgoing edges of a node is
bounded by n. Moreover, as in D�· -structures, every simple path of macronodes
starting from the root is of length at most 2n. Hence, both the breadth and the
depth of T are linear in |ϕ| and a tableau T for ϕ can be non-deterministically
generated and explored by using a polynomially bounded amount of space. Thus,
we obtain the following theorem.

Theorem 4. The proposed tableau method for D�· has a PSPACE complexity.

Theorem 5. (soundness) Let ϕ be a D�· -formula and T be a tableau for it. If
T is open, then ϕ is satisfiable.

Proof. Let T be an open tableau for ϕ. We build a fulfilling D�· -structure S =
〈〈V,E〉,L〉 for ϕ step by step, starting from the root of the tableau. Let n0 be
the root of T . Since T is open, then n0 is not closed. We generate a one-node
D�· -graph 〈{v0}, ∅〉 and we put the formulae that belong to n0 in L(v0), thus
associating n0 with v0. Now, let n be a non-closed node in T and let v be the
associated vertex in the D�· -graph. We distinguish four possible cases, depending
on the expansion rule R that has been applied to n in the tableau construction:

Case 1 R is one of NOT, AND, and REFL. Since n is not closed, its unique
successor n′ is not closed as well. We add the formulae contained in n′ to
L(v), thus associating n′ with v, and then we proceed with the pair (n′, v)
(note that different nodes can be associated with the same vertex of the
D�· -structure).

– R is OR. Since n is not closed, it has a successor n′ that is not closed. We
add the formulae contained in n′ to L(v), thus associating n′ with v, and
then we proceed with the pair (n′, v).

– R is 2-DENS. Since n is not closed, its unique successor n′ is not closed as
well. If n′ has already been associated with a vertex v′ during the construc-
tion of the D�· -structure, we simply add an edge (v, v′) to E; otherwise, we
add a new reflexive vertex v′ to V , we add the edges (v, v′) and (v′, v′) to
E, and we put the formulae that belong to n′ in L(v′), thus associating n′

with v′. Then we proceed with the pair (n′, v′).
– R is STEP. Since n is not closed, none of its successors n1, . . . , nk is closed

either. Take any of them, ni. If ni has already been associated with a vertex vi
during the construction of the D�· -structure, we simply add an edge (v, vi) to
E; otherwise, we add a new irreflexive vertex vi to V , we add the edge (v, vi)
to E, and we put the formulae that belong to ni in L(vi), thus associating
ni with vi. Then we proceed with the pair (ni, vi).



84 D. Bresolin et al.

Since any tableau for ϕ is finite, such a construction is terminating. However,
the resulting pair 〈〈V,E〉,L〉 is not necessarily a D�· -structure: while 〈V,E〉 re-
spects the definition of D�· -graph, the function L is not necessarily a labeling
function. Since in the tableau construction we add new formulae only when nec-
essary, there may exist a vertex v ∈ V and a formula ψ ∈ CL(ϕ) such that
neither ψ nor ¬ψ belongs to L(v). Let v ∈ V and ψ ∈ CL(ϕ) such that neither
ψ nor ¬ψ belongs to L(v). We can complete the definition of L as follows (by
induction on the complexity of ψ):

– if ψ = p, with p ∈ AP , we put ¬p ∈ L(v);
– If ψ = ¬ξ, we put ψ ∈ L(v) if and only if ξ �∈ L(v);
– If ψ = ψ1 ∨ψ2, we put ψ1 ∨ψ2 ∈ L(v) if and only if ψ1 ∈ L(v) or ψ2 ∈ L(v);
– If ψ = 〈D〉ξ, we put ψ ∈ L(v) if and only if there exists a descendant v′ of
v such that ξ ∈ L(v′).

It follows from the construction that the resulting D�· -structure 〈〈V,E〉,L〉 is
a fulfilling D�· -structure for ϕ. Therefore, by Theorem 2, ϕ is satisfiable. ��

Theorem 6. (completeness) Let ϕ be a D�· -formula and T be a tableau for
it. If T is closed, then ϕ is unsatisfiable.

Proof. Given a node n in a tableau, we say that (the set of formulae belonging
to) n is consistent if there exists a fulfilling D�· -structure S = 〈〈V,E〉,L〉 such
that if n belongs to a reflexive (resp., irreflexive) macronode then there exists a
reflexive (resp., irreflexive) vertex v ∈ V such that L(v) contains all formulae in
n; otherwise n is inconsistent.

We will prove that for any node n in a tableau T , if n is closed, then n is
inconsistent. If there exists a formula ψ ∈ CL(ϕ) such that n contains both
ψ and ¬ψ, then n is obviously inconsistent. In the other cases, we proceed by
induction, from the leaves to the root, on the expansion rule R that has been
applied to the node n in the construction of the tableau. Since any tableau is
finite, we eventually reach the initial node of T , thus concluding that ϕ is an
inconsistent formula.

– R is NOT. Then n is of the form ¬¬ψ, F and it has a unique successor
n′ = ψ, F within the same macronode. If n′ is closed then, by inductive
hypothesis, ψ, F is an inconsistent set. Hence, ¬¬ψ, F is inconsistent.

– R is OR. Then n is of the form ψ1∨ψ2, F and it has two immediate successors
n1 = ψ1, F and n2 = ψ2, F within the same macronode. If both n1 and n2 are
closed then, by inductive hypothesis, both ψ1, F and ψ2, F are inconsistent
sets. Hence, ψ1 ∨ ψ2, F is inconsistent.

– R is AND. Then n is of the form ¬(ψ1 ∨ ψ2), F and it has a unique succes-
sor n′ = ¬ψ1,¬ψ2, F within the same macronode. If n′ is closed then, by
inductive hypothesis, ¬ψ1,¬ψ2, F is an inconsistent set. Hence, ψ1 ∧ ψ2, F
is inconsistent.

– R is REFL. In this case, n belongs to a reflexive macronode and it is of
the form [D]ψ, F . Suppose, for contradiction, that n is closed but consistent,



Tableau Systems for Logics of Subinterval Structures over Dense Orderings 85

i.e., that there exists a fulfilling D�· -structure S = 〈〈V,E〉,L〉 and a reflexive
vertex v ∈ V such that n ⊆ L(v). Since v is reflexive, we have that (v, v) ∈ E
and thus L(v) Dϕ L(v). Hence, we have that ψ ∈ L(v) and thus the set of
formulae ψ, [D]ψ, F is consistent. By inductive hypothesis, this implies that
the successor n′ of n is not closed, which contradicts the hypothesis that n
is closed.

– R is 2-DENS. In this case, n belongs to an irreflexive macronode and it is of
the form [D]ψ1, . . . , [D]ψm, 〈D〉ϕ1, . . . , 〈D〉ϕh, F . Suppose, for contradiction,
that n is closed but consistent. Hence, there exists a fulfilling D�· -structure
S = 〈〈V,E〉,L〉 and an irreflexive vertex v ∈ V such that n ⊆ L(v). By the
definition of D�· -structure, v has a reflexive successor v′ such that L(v) Dϕ

L(v′). Hence, v′ is such that {ψ1, . . . , ψm, [D]ψ1, . . . , [D]ψm, 〈D〉ϕ1, . . . , 〈D〉
ϕh} ⊆ L(v′). This proves that the successor n′ of n in the tableau is consis-
tent. By inductive hypothesis, n′ is not closed – a contradiction.

– R is STEP. In this case, n belongs to a reflexive macronode and it is of
the form [D]ψ1, . . . , [D]ψm, 〈D〉ϕ1, . . . , 〈D〉ϕh, F . Suppose, for contradiction,
that n is closed but consistent. Hence, there exists a fulfilling D�· -structure
S = 〈〈V,E〉,L〉 and a reflexive vertex v ∈ V such that n ⊆ L(v). Since
S is fulfilling, for every formula 〈D〉ϕi there exists a descendant vi of v
such that ϕi ∈ L(vi). This implies that, for every i = 1, . . . , h, the set of
formulaeGi = {ϕi, ψ1, . . . , ψm, [D]ψ1, . . . , [D]ψm} is consistent. By inductive
hypothesis, this implies that every immediate successor of n is not closed,
which contradicts the assumption that n is closed.

Since the tableau T is closed if and only if its root is closed, and since the root
of the tableau is an irreflexive node, from the above result we can conclude that
the set {ϕ} is inconsistent, namely, that there are no fulfilling D�· -structures that
features an irreflexive vertex v such that ϕ ∈ L(v). Since a formula is satisfiable
if and only if it belongs to the labelling of the (irreflexive) root of some fulfilling
D�· -structure, this proves that ϕ is unsatisfiable. ��

6 The Logic D� of the Proper Subinterval Relation

For the case of proper subinterval relation, we replace D�· -structures by D�-
structures. Given an interval [b, e] in a dense linear order D = 〈D,<〉, a beginning
subinterval of [b, e] is any proper subinterval [b, e′], for b < e′ < e; likewise, an
ending subinterval of [b, e] is any proper subinterval [b′, e], for b < b′ < e.

The presence of the special families of beginning subintervals and ending
subintervals of a given interval in a structure with proper subinterval rela-
tion causes an essential distinction from the case interval structures with strict
subinterval relation studied in the previous sections. This distinction reflects
essentially on the respective logic D�, and in particular on the definition of
D�-structures and the construction of tableau for D�-formulae, where special
care must be taken for these families.



86 D. Bresolin et al.

Given a graph G = 〈V,E〉, a maximal cluster in G is a maximal set C of
reflexive vertices in V such that for every pair v, v′ ∈ C, v is reachable from v′.

Definition 8. A finite directed graph G = 〈V,E〉 is a D�-graph if:
1. there exists an irreflexive vertex v0 ∈ V , called the root of G, such that any

other vertex v ∈ V is reachable from it;
2. every irreflexive vertex v ∈ V has exactly two successors vb and ve, which

are both reflexive; we denote by Cb the maximal cluster containing vb and by
Ce the maximal cluster containing ve;

3. vb and ve have a unique common successor vc, which is reflexive;
4. vb and ve may have at most one irreflexive successor and there are no other

edges exiting from Cb and Ce;
5. every successor of vc different from itself is irreflexive.

A portion of a D�-graph is depicted in Figure 3.

... ...... ...... ... ... ...

Fig. 3. An example of D�-graph

Definition 9. A D�-structure is a quadruple S = 〈〈V,E〉,L,B, E〉, where:
1. 〈V,E〉 is a D�-graph.
2. L : V → Aϕ is a labeling function that assigns to every vertex v ∈ V an

atom L(v) such that L(v) Dϕ L(v′) for every edge (v, v′) ∈ E.
3. B : V → 2REQϕ and E : V → 2REQϕ are mappings that assign to every node

the set of the requests that must be satisfied respectively in the beginning
subintervals and in the ending subintervals of the current interval.

4. For every irreflexive vertex v ∈ V , we have that:
– the reflexive vertex vc is such that E(vc) = B(vc) = ∅ and REQ(L(vc)) =
REQ(L(v)) − (B(v) ∪ E(v)),

– every reflexive vertex v′ ∈ Cb is such that B(v′) = B(v), E(v′) = ∅ and
REQ(L(v′)) = REQ(L(vc)) ∪ B(v),

– the unique irreflexive successor v′′ from a vertex in Cb (if any) is such
that B(v′′) ⊂ B(v) and REQ(L(v′′)) ⊂ REQ(L(v)),

– every reflexive vertex v′ ∈ Ce is such that E(v′) = E(v), B(v′) = ∅ and
REQ(L(v′)) = REQ(L(vc)) ∪ E(v),

– the unique irreflexive successor v′′ from a vertex in Ce (if any) is such
that E(v′′) ⊂ E(v) and REQ(L(v′′)) ⊂ REQ(L(v)),

where vc, Cb, and Ce are defined as in Definition 8.



Tableau Systems for Logics of Subinterval Structures over Dense Orderings 87

Let v0 be the root of 〈V,E〉. If ϕ ∈ L(v0), we say that S is a D�-structure for ϕ.
The notion of fulfilling D�-structure is defined as in the case of D�· -structures.
An analogous of Theorem 1 holds for D�-structures as well.

Theorem 7. Let ϕ be a D�-formula which is satisfied in a dense interval model.
Then, there exists a fulfilling D�-structure S = 〈〈V,E〉,L,B, E〉 such that ϕ ∈
L(v0), where v0 is the root of 〈V,E〉.

Now, let S be a fulfilling D�-structure for a formula ϕ. To prove that ϕ is
satisfiable in a dense interval structure we consider the interval [0, 1] of the
rational line and define a function fS mapping intervals in I([0, 1])− to vertices
in S. Such a function will allow us to define a model for ϕ.

Definition 10. Let S = 〈〈V,E〉,L,B, E〉 be a D�-structure. The function fS :
I([0, 1])− �→ V is recursively defined as follows. First, fS([0, 1]) = v0. Now, let
[b, e] be an interval such that fS([b, e]) = v, but fS has not been defined for the
subintervals of [b, e].
Case 1: v is an irreflexive vertex. Let vb, ve be the reflexive successors of v, Cb

and Ce be their clusters, and vc be the reflexive vertex that they have as common
successor. We consider the case when vb has an irreflexive successor vmax

b , ve
has an irreflexive successor vmax

e , and vc has k irreflexive successors v1, . . . , vk.
The other cases are simpler and can be treated in a similar way. Let p = e−b

2k+3 .
We define fS in a way similar to the case of D�· -structures:
1. we put fS([b, b+ p]) = vmax

b and fS([e− p, e]) = vmax
e ;

2. for every i = 1, . . . , k, we put fS([b + 2ip, b+ (2i+ 1)p]) = vi;
3. for every i = 1, . . . , k + 1, we put fS([b + (2i− 1)p, b+ 2ip]) = vc;
4. for every strict subinterval [b′, e′] of [b, e] that is not a subinterval of any of

the intervals [b+ ip, b+ (i+ 1)p], we put fS([b′, e′]) = vc.
To complete the construction we need to define fS for the beginning intervals
[b, e′] such that b + p < e′ < e and for the ending intervals [b′, e] such that
b < b′ < e − p. We map such beginning intervals [b, e′] to vertices in Cb and
ending intervals [b′, e] to vertices in Ce, with the further constraint that for every
interval [b, e′] and every node v′ ∈ Cb there is an interval [b, e′′] � [b, e′] such
that fS([b, e′′]) = v′′ and, conversely, that for every interval [b′, e] and every
node v′ ∈ Ce there is an interval [b′′, e] � [b′′, e] such that fS([b′′, e]) = v′′. The
density of the rational line [0, 1] allow us to define such a mapping.
Case 2: v is a reflexive vertex. We can assume, by construction, that v is one
of the vertices vc that have only irreflexive successors (except itself). In such a
case we proceed as for D�· -structures in the definition of fS.

Now, given a fulfilling D�-structure S for ϕ, we define the corresponding in-
terval model MS = 〈I([0, 1])−,�,V〉, where, for every p ∈ AP , V(p) = {[b, e] :
p ∈ L(fS([b, e]))}. It turns out that MS is a model for ϕ. The following theorem
can be proved by structural induction, similarly to Theorem 2.

Theorem 8. Given a fulfilling D�-structure S for ϕ, the corresponding interval
model MS = 〈I([0, 1])−,�,V〉 is such that MS, [0, 1] � ϕ.



88 D. Bresolin et al.

The following observations imply a bound on the size of D�-structures:

– given a cluster of reflexive vertices C, we have that all the vertices in C share
the same set of requests REQC . Furthermore, we can remove from C all the
vertices that either does not satisfy any of the 〈D〉-formulae in REQC or
they satisfy only 〈D〉-formulae that are satisfied by some other vertex in C.
This implies that we can build a D�-structure where the size of each cluster
is bounded by the number of 〈D〉-formulae in CL(ϕ).

– we can bound the breadth and depth of the D�· -structure by exploiting the
same technique that we use for D�-structures.

Theorem 9. For every satisfiable D�-formula ϕ, there exists a fulfilling D�-
structure with breadth and depth bounded by 2 · |ϕ|.

As for the complexity, given a formula ϕ, let n be the number of 〈D〉-formulae in
CL(ϕ). From the above theorem, every simple path (v0, ..., vn) starting from the
root of a D�-structure for ϕ has length at most 2n. A PSPACE non-deterministic
algorithm D�-sat for checking satisfiability of D� formulae can be obtained by
revising the procedure D�· -sat as follows. At each step, once it has nondeter-
ministically generated an irreflexive atom, it nondeterministically generates one
reflexive atom for vb, one for ve, and one for vc; then, it generates the reflexive
atoms for the vertices contained in the cluster of vb and in the cluster of ve, if
any; finally, it generates the irreflexive successors of vb and ve, and one irreflex-
ive successor for vc, for every 〈D〉-formula contained in L(vc). D�-sat fails if an
atom with the required properties cannot be generated; otherwise, it succeeds
and it generates a fulfilling D�-structure for ϕ. The very same reduction that
has been used to prove the PSPACE-hardness of D�· can be applied to D�, thus
proving that this logic is PSPACE-complete as well.

The tableau method for D�· can be adapted to D�, even though such an
adaptation is not trivial at all (for lack of space, we omit its description).

7 Conclusions

In this paper we have started building tableau-based decision procedures for
logics of subinterval structures. First, we have considered in detail the case of
the logic D�· ; then, we have shown how to refine structures and methods for
D�· to cope with the logic D�. Our methodology can be suitably adapted to the
case we admit the existence of point intervals [b, b] in subinterval structures over
dense orderings. The cases of discrete and general orderings present additional
challenges which will be treated in subsequent publications.

Acknowledgements

We are grateful to the anonymous referees for useful remarks and constructive
criticisms. This work has been funded by the bilateral project “Temporal logics
in computer and information sciences”, supported by the Italian Ministero degli



Tableau Systems for Logics of Subinterval Structures over Dense Orderings 89

Affari Esteri and the National Research Foundation of South Africa, under the
Joint Italy/South Africa Science and Technology Agreement. In addition, Da-
vide Bresolin, Angelo Montanari, and Pietro Sala have been supported by the
Italian PRIN project on “Constraints and preferences as a unifying formalism
for system analysis and solution of real-life problems” and by the European IN-
TAS project on “Algebraic and Deduction Methods in Non Classical Logics and
their Applications to Computer Science”.

References

1. van Benthem, J.: The Logic of Time: A Model-Theoretic Investigation into the
Varieties of Temporal Ontology and Temporal Discourse, Second Edition. Kluver,
Norwell (1991)

2. Blackburn, P., de Rijke, M., Venema, V.: Modal Logic. CUP (2001)
3. Bowman, H., Thompson, S.: A decision procedure and complete axiomatization

of finite interval temporal logic with projection. Journal of Logic and Computa-
tion 13(2), 195–239 (2003)

4. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: On Decidability and Ex-
pressiveness of Propositional Interval Neighborhood Logics. In: LFCS 2007. Proc. of
the International Symposium on Logical Foundations of Computer Science. LNCS,
vol. 4514, pp. 84–99. Springer, Heidelberg (2007)

5. Bresolin, D., Montanari, A.: A tableau-based decision procedure for a branching-
time interval temporal logic. In: Schlingloff, H. (ed.) Proc. of the 4th Int. Workshop
on Methods for Modalities, pp. 38–53 (2005)

6. Bresolin, D., Montanari, A.: A tableau-based decision procedure for Right Proposi-
tional Neighborhood Logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI),
vol. 3702, Springer, Heidelberg (2005)

7. Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm
for Propositional Neighborhood Logic. In: Thomas, W., Weil, P. (eds.) STACS
2007. LNCS, vol. 4393, Springer, Heidelberg (2007)

8. Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for Right
Propositional Neighborhood Logic. Journal of Automated Reasoning 38(1-3), 173–
199 (2007)

9. Goranko, V., Montanari, A., Sciavicco, G., Sala, P.: A general tableau method
for propositional interval temporal logics: Theory and implementation. Journal of
Applied Logic 4(3), 305–330 (2006)

10. Halpem, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal
of the ACM 38(4), 935–962 (1991)

11. Shapirovsky, I.: On PSPACE-decidability in Transitive Modal Logic. In: Schmidt,
R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic,
vol. 5, pp. 269–287. King’s College Publications, London (2005)

12. Shapirovsky, I., Shehtman, V.: Chronological future modality in Minkowski space-
time. In: Balbiani, P., Suzuki, N.Y., Wolter, F., Zakharyaschev, M. (eds.) Advances
in Modal Logic, vol. 4, pp. 437–459. King’s College Publications, London (2003)



A Cut-Free Sequent Calculus for

Bi-intuitionistic Logic

Linda Buisman1 and Rajeev Goré1,2

1 The Australian National University
Canberra ACT 0200, Australia

2 Logic and Computation Programme
Canberra Research Laboratory, NICTA�, Australia

{Linda.Buisman,Rajeev.Gore}@anu.edu.au

Abstract. Bi-intuitionistic logic is the extension of intuitionistic logic
with a connective dual to implication. Bi-intuitionistic logic was intro-
duced by Rauszer as a Hilbert calculus with algebraic and Kripke se-
mantics. But her subsequent “cut-free” sequent calculus for BiInt has
recently been shown by Uustalu to fail cut-elimination. We present a new
cut-free sequent calculus for BiInt, and prove it sound and complete with
respect to its Kripke semantics. Ensuring completeness is complicated by
the interaction between implication and its dual, similarly to future and
past modalities in tense logic. Our calculus handles this interaction using
extended sequents which pass information from premises to conclusions
using variables instantiated at the leaves of failed derivation trees. Our
simple termination argument allows our calculus to be used for auto-
mated deduction, although this is not its main purpose.

1 Introduction

Propositional intuitionistic logic (Int) has connectives →, ∧, ∨ and ¬, with
¬ϕ definable as ¬ϕ := ϕ →⊥. Propositional dual intuitionistic logic (DualInt)
has connectives −< , ∧, ∨ and ∼ , with ∼ϕ definable as ∼ϕ := �−< ϕ. Bi-
intuitionistic logic (BiInt) or subtractive logic or Heyting-Brouwer logic is the
union of Int and DualInt. It is a conservative extension of both and was first
studied by Rauszer [11,12].

Rauszer’s Kripke semantics for BiInt involve a reflexive and transitive bi-
nary relation R, and its converse R−1, similar to the normal tense logic Kt.S4.
Specifically, a world w makes ϕ → ψ true if every R-successor v that makes
ϕ true also makes ψ true, and a world w makes ϕ−< ψ true if there exists an
R-predecessor v where ϕ holds but ψ does not. Thus, ϕ−<ψ (“ϕ excludes ψ”)
is a natural dual to ϕ→ ψ (“ϕ implies ψ”).

While there are many cut-free sequent systems for Int (e.g., [15,6,5]) and
DualInt (e.g., [16,4]), the case for BiInt is less satisfactory. Rauszer presented
� National ICT Australia is funded by the Australian Government’s Dept of Commu-

nications, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Centre of Excellence program.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 90–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Cut-Free Sequent Calculus for Bi-intuitionistic Logic 91

a sequent calculus for BiInt in [11] and “proved” it cut-free, but Uustalu [17]
has recently shown that the BiInt-valid formula p → (q ∨ (r → ((p−< q) ∧ r))
cannot be derived in Rauszer’s calculus without the cut rule. Uustalu’s example
also shows that Crolard’s sequent calculus [3] for BiInt is not cut-free. Uustalu’s
example fails in these calculi because certain sequent rules are restricted to
singleton succedents or antecedents in their conclusions, and these fail to capture
the interaction between → and −< . Uustalu and Pinto have apparently given
a cut-free sequent-calculus for BiInt [19,18] using labelled formulae which use
the Kripke semantics directly in the rules. But we have been unable to examine
their rules or proofs, as only the abstract of their work has been published.

We present a new purely syntactic cut-free sequent calculus for BiInt. We
avoid Rauszer’s and Crolard’s restrictions on the antecedents and succedents for
certain rules by basing our rules on Dragalin’s GHPC [5] which allows multiple
formulae on both sides of sequents. To maintain intuitionistic soundness, we re-
strict the premise of the implication-right rule to a singleton in the succedent.
Dually, the premise of our exclusion-left rule is restricted to a singleton in the
antecedent. But using Dragalin’s calculus and its dual does not give us BiInt
completeness. We therefore follow Schwendimann [13], and use sequents which
pass relevant information from premises to conclusions using variables instan-
tiated at the leaves of failed derivation trees. We then recompute parts of our
derivation trees using the new information, similarly to the restart technique of
[9]. Our calculus thus uses a purely syntactic addition to traditional sequents,
rather than resorting to a semantic mechanism such as labels. Our termination
argument also relies on two new rules from Śvejdar [14].

If we were interested only in decision procedures, we could obtain a decision
procedure for BiInt by embedding it into the tense logic Kt.S4 [20], and using
tableaux for description logics with inverse roles [9]. However, an embedding into
Kt.S4 provides no proof-theoretic insights into BiInt itself. Moreover, the restart
technique of Horrocks et al. [9] involves non-deterministic expansion of disjunc-
tions, which is complicated by inverse roles. Their actual implementation avoids
this non-determinism by keeping a global view of the whole counter-model under
construction. In contrast, we handle this non-determinism by syntactically en-
coding it using variables and extended formulae, neither of which have a semantic
content. Our purely syntactic approach is preferable for proof-theoretic reasons,
since models are never explicitly involved in the proof system: see Remark 2.

In Section 2, we define the syntax and semantics of BiInt. In Section 3, we in-
troduce our sequent calculus GBiInt and give an example derivation of Uustalu’s
interaction formula. We prove the soundness and completeness of GBiInt in
Sections 4 and 5 respectively. A version with full proofs can be found in [2].

2 Syntax and Semantics of BiInt

The formulae Fml of BiInt are built from a denumerable set of Atoms and the
constants � and ⊥ using the connectives ∧, ∨, →, −<, ¬, and ∼. The length of
a formula χ is just the number of symbols it contains. We use classical first-order



92 L. Buisman and R. Goré

w � ϕ ∨ ψ if w � ϕ or w � ψ
w � ϕ ∧ ψ if w � ϕ & w � ψ
w � ¬ϕ if ∀u ∈ W.[wRu ⇒ (u � ϕ)]
w � ϕ → ψ if ∀u ∈ W.[wRu ⇒ (u � ϕ or u � ψ)]
w � ∼ ϕ if ∃u ∈ W.[uRw & u � ϕ]

w � ϕ−<ψ if ∃u ∈ W.[uRw & u � ϕ & u � ψ]

Fig. 1. BiInt semantics

logic when reasoning about BiInt at the meta-level. A BiInt frame is a pair
〈W ,R〉, where W is a non-empty set of worlds and R ⊆ W × W is a binary
reflexive transitive relation. A BiInt model is a triple M = 〈W ,R, ϑ〉, where
〈W ,R〉 is a BiInt frame and the truth valuation ϑ is a function W ×Atoms →
{true, false} which obeys: ∀w ∈ W .ϑ(w,�) = true; ∀w ∈ W .ϑ(w,⊥) = false; and
which obeys persistence, also known as truth monotonicity:

∀u,w ∈ W .∀p ∈ Atoms .(ϑ(w, p) = true & wRu) ⇒ (ϑ(u, p) = true).

Given a model M = 〈W ,R, ϑ〉, a world w ∈ W and an atom p ∈ Atoms , we
write w � p if ϑ(w, p) = true. We pronounce � as “forces”, and we pronounce
� as “rejects”. The forcing of compound formulae is defined in Fig. 1. Since ¬
and ∼ can be derived from → and −< respectively, we restrict our attention
to →, −<, ∧, ∨. We obtain persistence for compound formulae by induction on
their length, and then reverse persistence for compound formulae follows from
persistence because the truth valuation is binary:

∀M = 〈W ,R, ϑ〉.∀u,w ∈ W .∀ϕ ∈ Fml .(w � ϕ & wRu⇒ u � ϕ)
∀M = 〈W ,R, ϑ〉.∀u,w ∈ W .∀ϕ ∈ Fml .(w � ϕ & uRw⇒ u � ϕ).

We write ε to mean the empty set. Given a formula ϕ and two sets of formulae
Δ and Γ , we write Δ,Γ for Δ ∪ Γ and we write Δ,ϕ for Δ ∪ {ϕ}. Given a
model M = 〈W ,R, ϑ〉 and a world w ∈ W , we write w � Γ (w forces Γ ) if
∀ϕ ∈ Γ.w � ϕ, and we write w =| Δ (w rejects Δ) if ∀ϕ ∈ Δ.w � ϕ. We
deliberately use “=|” for rejection of sets to emphasize that every member of the
set is rejected, instead of “�”, which could be seen as “some member is rejected”.

Γ �BiIntΔ means: ∀M = 〈W ,R, ϑ〉.∀w ∈ W .(w � Γ ⇒ ∃ϕ ∈ Δ.w � ϕ)
Γ ��BiIntΔ means: ∃M = 〈W ,R, ϑ〉.∃w ∈ W .(w � Γ & w =| Δ).

Thus Γ ��BiIntΔ means that Γ �BiIntΔ is falsifiable. As usual, our sequent calculus
has a semantic reading which assumes that there exists an initial world w0 in a
BiInt-model M where w0 � Γ and w0 =| Δ. We then systematically apply the
sequent rules using backward proof-search to either construct M successfully,
giving us Γ ��BiIntΔ, or conclude that M cannot exist, giving us Γ �BiIntΔ.

3 Our Sequent Calculus GBiInt

We now present GBiInt, a Gentzen-style sequent calculus for BiInt. The
sequents have a non-traditional component in the form of variables that are



A Cut-Free Sequent Calculus for Bi-intuitionistic Logic 93

instantiated at the leaves of the derivation tree, and passed back to lower se-
quents from premises to conclusion. Note that variables are not names for Kripke
worlds.

We extend our syntax for presenting some of our sequent rules. The extended
BiInt formulae are defined as: if ϕ is a BiInt formula, then ϕ is an extended
BiInt formula, and if S/P is a set {{ϕ0

0, · · · , ϕn
0}, · · · , {ϕ0

m, · · · , ϕk
m}} of sets of

BiInt formulae, then
∨
S and

∧
P are extended BiInt formulae with intended

semantics ∨
S ≡ (ϕ0

0 ∧ · · · ∧ ϕn
0 ) ∨ · · · ∨ (ϕ0

m ∧ · · · ∧ ϕk
m)∧

P ≡ (ϕ0
0 ∨ · · · ∨ ϕn

0 ) ∧ · · · ∧ (ϕ0
m ∨ · · · ∨ ϕk

m).

From now on, we implicitly treat extended BiInt formulae as their BiInt
equivalents. Given a BiInt model M = 〈W ,R, ϑ〉, and a world w ∈ W , the
following semantics follows directly from their definition:

w �
∨
S if ∃Γ ∈ S.w � Γ and w =|

∧
P if ∃Δ ∈ P .w =| Δ.

We can now extend the definition of forcing and rejecting to extended BiInt
formulae in the obvious way. If Γ and Δ are sets of extended BiInt formulae,
and ϕ is an extended BiInt formula, then w � Γ if ∀ϕ ∈ Γ.w � ϕ, and w =|
Δ if ∀ϕ ∈ Δ.w � ϕ.

A GBiInt sequent is an expression S
P
∣∣∣∣Γ � Δ, where the left hand side

(LHS) Γ is a set of extended BiInt formulae; the right hand side (RHS) Δ is
a set of extended BiInt formulae; and the variables S and P are each a set of
sets of formulae. We sometimes write just Γ � Δ, ignoring the variable values
for readability, but only when the values of the variables are not important to
the discussion. In terms of the counter-model under construction, we say that
a sequent S

P
∣∣∣∣Γ � Δ is falsifiable [at w0 in M] iff there exists a BiInt model

M = 〈W ,R, ϑ〉 and ∃w0 ∈ W such that w0 � Γ and w0 =| Δ. Thus, a sequent
Γ � Δ is not falsifiable iff Γ �BiIntΔ. We say the variable conditions of a sequent
γ = S

P
∣∣∣∣Γ � Δ hold iff γ is falsifiable at w0 in some model M = 〈W ,R, ϑ〉 and

the following Successor/Predecessor conditions hold:

S-condition: ∃Σ ∈ S.∀w ∈ W .w0Rw ⇒ w � Σ
P-condition: ∃Π ∈ P .∀w ∈ W .wRw0 ⇒ w =| Π .

A sequent rule is an expression of one of the two forms below

γ1 · · · γn(name) γ
side conditions

γ0 · · · γn(name) γ
side conditions

where n ≥ 0, and each γi is a sequent. The rule has a name, a conclusion
γ, optional premise(s) γ1, · · · , γn, optional side conditions, and universal
branching as indicated by a solid line or existential branching as indicated by a
dashed line (explained shortly).

Our traditional rules (Fig. 2) are based on Dragalin’s GHPC [5] for Int because
we require multiple formulae in the succedents and antecedents of sequents for
completeness; we have added symmetric rules for the DualInt connective −< .



94 L. Buisman and R. Goré

(Id)
S:=ε
P:=ε

∣∣∣∣ Γ, ϕ � Δ, ϕ
(⊥L)

S:=ε
P:=ε

∣∣∣∣ Γ,⊥� Δ
(
R)

S:=ε
P:=ε

∣∣∣∣ Γ � Δ, 


S1
P1

∣∣∣
∣∣∣ Γ, ϕ ∧ ψ, ϕ, ψ � Δ

(∧L)
S:=S1
P:=P1

∣∣∣
∣∣∣ Γ, ϕ ∧ ψ � Δ

S1
P1

∣∣∣
∣∣∣ Γ � Δ, ϕ ∧ ψ, ϕ

S2
P2

∣∣∣
∣∣∣ Γ � Δ, ϕ ∧ ψ, ψ

(∧R)
S:=S1∪S2
P:=P1∪P2

∣∣∣
∣∣∣ Γ � Δ, ϕ ∧ ψ

S1
P1

∣∣∣
∣∣∣ Γ � Δ, ϕ ∨ ψ, ϕ, ψ

(∨R)
S:=S1
P:=P1

∣∣∣
∣∣∣ Γ � Δ, ϕ ∨ ψ

S1
P1

∣∣∣
∣∣∣ Γ, ϕ ∨ ψ, ϕ � Δ

S2
P2

∣∣∣
∣∣∣ Γ, ϕ ∨ ψ, ψ � Δ

(∨L)
S:=S1∪S2
P:=P1∪P2

∣∣∣
∣∣∣ Γ, ϕ ∨ ψ � Δ

S1
P1

∣∣∣
∣∣∣ Γ, ϕ → ψ � ϕ, Δ

S2
P2

∣∣∣
∣∣∣ Γ, ϕ → ψ, ψ � Δ

(→L)
S:=S1∪S2
P:=P1∪P2

∣∣∣
∣∣∣ Γ, ϕ → ψ � Δ

S1
P1

∣∣∣
∣∣∣ Γ, ψ � Δ, ϕ−< ψ

S2
P2

∣∣∣
∣∣∣ Γ � Δ, ϕ−< ψ, ϕ

(−< R)
S:=S1∪S2
P:=P1∪P2

∣∣∣
∣∣∣ Γ � Δ, ϕ−< ψ

For every rule with premises πi and conlusion γ, apply the rule only if:
∀πi.(LHSπi �⊆ LHSγ or RHSπi �⊆ RHSγ)

Fig. 2. GBiInt rules - traditional

The main difference is that our (→L) rule and the symmetric (−<R) carry their
principal formula and all side formulae into the premises. Our rules for ∧ and ∨
also carry their principal formula into their premises to assist with termination.
Note that there are other approaches to a terminating sequent calculus for Int,
e.g., Dyckhoff’s contraction-free calculi [6], or history methods by Heuerding
et al. [8] and Howe [10]. These methods are less suitable when the interaction
between Int and DualInt formulae needs to be considered, since they erase
potentially relevant formulae too soon during backward proof search. Moreover,
we found it easier to prove semantic completeness with our loop-checking method
than with history-based methods since both [8] and [10] prove completeness using
syntactic transformations of derivations. Consequently, while GBiInt is sound
and complete for the Int (and DualInt) fragment of BiInt, it is unlikely to be
as efficient on the fragment as these specific calculi.

Our rules for→ on the right and −< on the left (Fig. 3) are non-traditional.
The (→R) and (−<L) rules have two premises instead of one, and they are con-
nected by existential branching as indicated by the dotted horizontal line.
Existential branching means that the conclusion is derivable if some premise is
derivable; thus it is dual to the conventional universal branching, where the con-
clusion is derivable if all premises are derivable. We chose existential branching
rather than two separate non-invertible rules so the left premise can communicate
information via variables to the right premise. This inter-premise communica-
tion and the use of variables is crucial to proving interaction formulae of BiInt,
and it gives our calculus an operational reading.

When applying an existential branching rule during backward proof search,
we first create the left premise. If the left premise is non-derivable, then it returns



A Cut-Free Sequent Calculus for Bi-intuitionistic Logic 95

(Ret)
S:={Γ}
P:={Δ}

∣∣∣
∣∣∣ Γ � Δ

where no other rule is applicable

S1
P1

∣∣∣
∣∣∣ Γ � Δ, ϕ → ψ, ψ

(→I
R)

S:=S1
P:=P1

∣∣∣
∣∣∣ Γ � Δ, ϕ → ψ

S1
P1

∣∣∣
∣∣∣ Γ, ϕ, ϕ−< ψ � Δ

(−< I
L)

S:=S1
P:=P1

∣∣∣
∣∣∣ Γ, ϕ−< ψ � Δ

S1
P1

∣∣∣
∣∣∣ Γ, ϕ � ψ

S2
P2

∣∣∣
∣∣∣ Γ � Δ, ϕ → ψ,

∧
P1

(→R)

S/P:=

⎧
⎪⎪⎨

⎪⎪⎩

S1/P1 if P1 = ε
S2/P2 if right prem created
{Γ}/{Δ, ϕ → ψ} otherwise

∣∣∣∣∣∣

∣∣∣∣∣∣
Γ � Δ, ϕ → ψ

right prem created only if P1 �= ε & ∀Πi ∈ P1.Πi �⊆ {Δ, ϕ → ψ}

S1
P1

∣∣∣
∣∣∣ ϕ � Δ, ψ

S2
P2

∣∣∣
∣∣∣ Γ, ϕ−< ψ,

∨
S1 � Δ

(−< L)

S/P:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S1/P1 if S1 = ε
S2/P2 if right prem created

{Γ, ϕ−< ψ}/{Δ} otherwise

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
Γ, ϕ−< ψ � Δ

right prem created only if S1 �= ε & ∀Σi ∈ S1.Σi �⊆ {Γ, ϕ−< ψ}

S1
P1

∣∣∣
∣∣∣ Γ � Δ, Π1 · · · Sn

Pn

∣∣∣
∣∣∣ Γ � Δ, Πn

(
∧

R)
S:=

⋃n
1 Si

P:=
⋃n
1 Pi

∣∣∣
∣∣∣ Γ � Δ,

∧
Π

S1
P1

∣∣∣
∣∣∣ Γ, Σ1 � Δ · · · Sn

Pn

∣∣∣
∣∣∣ Γ, Σn � Δ

(
∨

L)
S:=

⋃n
1 Si

P:=
⋃n
1 Pi

∣∣∣
∣∣∣ Γ,

∨
Σ � Δ

For every universally branching rule with premises πi and conlusion γ,
apply the rule only if: ∀πi.(LHSπi �⊆ LHSγ or RHSπi �⊆ RHSγ)

For every existentially branching rule with left premise π and conlusion γ,
apply the rule only if: LHSπ �⊆ LHSγ or RHSπ �⊆ RHSγ

Fig. 3. GBiInt rules - non-traditional

the variables S1 and P1. We then use these variables to create the right premise,
which corresponds to the same world as the conclusion, but with updated infor-
mation. Our existential branching rules work together with (Ret), which assigns
the variables at non-derivable leaves of failed derivation trees, and (

∧
R) and

(
∨

L), which extract the different variable choices at existential branching rules.
The conclusion of each of our rules assigns the variables based on the

variables returned from the premise(s), and we use the indices i, 1, 2 to indicate
the premise from which the variable takes its value. For rules with a single
premise, the variables are simply passed down from premise to conclusion. For
example, the conclusion of (∧L) in Fig. 2 assigns S := S1, where S1 is the
value of the variable at the premise. However, for rules with multiple universally
branching premises, we take a union of the sets of sets corresponding to each
falsifiable premise. For example, the conclusion of (

∧
R) in Fig. 3 assigns S :=⋃n

1 Si, where Si is the value of the variable at the i-th premise.



96 L. Buisman and R. Goré

This way, the sets of sets stored in our variables determinise the return
of formulae to lower sequents – each non-derivable premise corresponds to an
open branch, and at this point we do not know whether it will stay open once
processed in conjunction with lower sequents. Therefore, we need to temporarily
keep all open branches: see Example 2 in [2]. Then the intuition behind adding∧
P to the right premise of (→R) is that the subsequent application of (

∧
R)

will create one or more premises, depending on the cardinality of P . Since P
is a set of sets representing all the open branches, all of the premises of (

∧
R)

have to be derivable in order to obtain a derivation. On the other hand, if some
premises of (

∧
R) are non-derivable (open), we form the set that consists of the

union of the variables returned by those premises, and pass the union back to
lower sequents, and so on. The premises that are derivable contribute only ε and
are thus ignored by the union operator. Also, we only create the right premise
of (→R) if every member of P introduces new formulae to the current world.
Otherwise, the current world already contains one of the open branches, which
would still remain open after an application of (

∧
R). To summarise, the sets-of-

sets concept of variables is critical to the soundness of GBiInt, as it allows us
to remember the required choices arising further up the tree.

The extended syntax allows us to syntactically encode the variable choices
described above. While the variables S and P are sets of sets when we pass them
down the tree and combine them using set union, we use

∨
S on the left and∧

P on the right of the sequent to reflect these choices when we add
∨
S or

∧
P

to the right premise of an existentially branching rule. Then the (
∨

L) and (
∧

R)
rules break down the extended formulae

∨
S and

∧
P to yield several premises,

each corresponding to one variable choice. Thus the extended syntax allows us
to give an intuitive syntactic representation of the variable choices.

We have also added the rule (→I
R) for implication on the right (and dually,

(−<I
L)) originally given by Śvejdar [14]. Rather than immediately creating the

successor for a rejected ϕ → ψ, the (→I
R) rule first pre-emptively adds ψ to

the right hand side of the sequent. Although Śvejdar himself does not give the
semantics behind this rule, and is unable to explain the precise role it plays in
his calculus, it is very useful in our termination proof. The rule effectively uses
the reverse persistence property – if some successor v forces ϕ and rejects ψ,
then the current world w must reject ψ too, for if w forces ψ, then by forward
persistence so does v, thus giving a contradiction.

The side condition on each of our rules is a general blocking condition,
where we only explore the premise(s), if they are different from the conclusion.
For example, in the (∧R) case, the blocking condition means that we apply the
rule in backward proof search only if ϕ �∈ Δ and ψ �∈ Δ, since otherwise some
premise would be equal to the conclusion.

GBiInt also has the subformula property. This is obvious for all rules,
except (→R) and the dual (−<L). For these, the right premise “constructs” the
formulae

∧
P and

∨
S. However, since P and S are sets of sets of subformulae

of the conclusion that are again extracted by (
∧

R) and (
∨

L), the right premise
of (→R) and (−<L) effectively only contains subformulae of the conclusion.



A Cut-Free Sequent Calculus for Bi-intuitionistic Logic 97

A GBiInt tree for S
P
∣∣∣∣Γ � Δ is a tree rooted at S

P
∣∣∣∣Γ � Δ where each child

is obtained by a backwards application of a GBiInt rule and each leaf is an
instance of (⊥L), (�R), (Id) or (Ret).

Definition 1. A GBiInt tree for γ = S
P
∣∣∣∣Γ � Δ is a derivation if: γ is the

conclusion of a (⊥L), (�R) or (Id) rule application; OR γ is the conclusion of
a universal branching rule application and all its premises are derivations;
OR γ is the conclusion of an existential branching rule application and some
premise is a derivation.

In the following example, we use a simplified version of the (∧R) rule, which
discards the principal formula from the premises, merely to save horizontal space.
Also, we only show non-empty variable values.

Example 1. The following is a derivation tree of Uustalu’s interaction formula
p→ (q ∨ (r → ((p−<q) ∧ r)), simplified to the sequent p � q, r→ ((p−<q) ∧ r).
Let X := r → ((p−<q) ∧ r). The tree should be read bottom-up while ignoring
the variables S and P . At the leaves, the variables are assigned and transmit
information down to parents and across to some siblings. The top left application
of (Ret) occurs because an application of (−<R) to the bolded p−<q is blocked,
since its left premise would not be different from its conclusion. The key to
finding the contradiction is the bolded p−<q formula that is passed from the
left-most leaf back to the right premise (1) of (→R). The (

∧
R) in (1) is unary

here, since the P variable contains only one set of formulae.

(Ret)
S:={{p,r,q}}

P:={{p−<q}}

∣∣∣
∣∣∣ p, r, q � p−<q

(Id)

p, r � p−< q, p

(−< R) S:={{p,r,q}}
P:={{p−<q}}

∣∣∣
∣∣∣ p, r � p−< q

(Id)
p, r � r

(∧R)
S:={{p,r,q}}

P:={{p−<q}}

∣∣∣
∣∣∣ p, r � (p−< q) ∧ r (1)

(→R)

p � q, r → ((p−< q) ∧ r)

where (1) is:

(Id)

p, q � q, X, p−< q

(Id)

p � q, X, p−< q, p
(−< R)

p � q, X, p−<q
(
∧

R)

p � q, X,
∧
{{p−<q}}

We now show that proof search in GBiInt terminates because our soundness
proof relies on the left premises of existentially branching rules to deliver vari-
ables to their right premises. The (Ret) rule is an operational rule. All other rules
are logical rules and are categorised as follows: the static rules (Id), (⊥L), (�R),
(∧L), (∨L), (∧R), (∨R), (→L), (−<R), (→I

R) add formulae to the current world
in the counter-model; the transitional rules (→R), (−<L) create new worlds and
add formulae to them; and the special rules (

∨
L), (

∧
R) decompose variables re-

turned from non-derivable leaves. This classification justifies our backward proof
search strategy (Fig. 4).



98 L. Buisman and R. Goré

Function Prove
Input: sequent γ0

Output: Derivable (true or false)

1. If ρ ∈ {(Id), (⊥L), (�R)} is applicable to γ0 then return true
2. Else if any special or static rule ρ is applicable to γ0 then

(a) Let γ1, · · · , γn be the (universally branching) premises of ρ
(b) Return

∧n
i=1 Prove(γi)

3. Else for each transitional rule ρ applicable to γ0 do
(a) Let γ1 and γ2 be the (existentially branching) premises of ρ
(b) If

∨
i∈{1,2} Prove(γi) = true then return true

4. Endif
5. Return false.

Fig. 4. Proof search strategy. Note that we have left out the variables for simplicity.∧n
i=1 Prove(γi) is true iff Prove(γi) is true for all premises γi for 1 ≤ i ≤ n, and∨
i∈{1,2} Prove(γi) is true iff Prove(γi) is true for some premise γi for i ∈ {1, 2}.

For a BiInt formula ϕ, the subformulae sf(ϕ) are defined as usual with
ϕ ∈ sf(ϕ). For extended BiInt formulae

∨
S,
∧
P , and a set Γ of extended

BiInt formulae let:

sf(
∨
S) =

⋃

Σ ∈ S
sf(Σ) sf(

∧
P) =

⋃

Π ∈ P
sf(Π) sf(Γ ) =

⋃

χ ∈ Γ

sf(χ).

Note that the subformulae of
∨
S and

∧
P do not include the conjunctions

and disjunctions implicit in their BiInt equivalents.
Given a GBiInt-tree T and a branch B in T , we say that B is forward-

only if B contains only applications of static and special rules, (→R) and the
right premises of (−<L). Similarly, B is backward-only if B contains only
applications of static and special rules, (−<L) and the right premises of (→R).
A branch is single-directional if it is either forward-only or backward-only. A
branch contains interleaved left premises of transitional rules if it contains a
sequence 〈· · · , γi, · · · , γj , · · · , γk, · · · 〉 s.t. γi is the left premise of (→R), γj is the
left premise of (−<L), and γk is the left premise of (→R).

Lemma 1. Every forward/backward only branch of any GBiInt-tree is finite.

Proof. We prove the lemma for forward-only branches, the one for backward-
only branches is similar. Let >len be a lexicographic ordering of sequents: (Γ2 �
Δ2) >len (Γ1 � Δ1) iff |Γ2| > |Γ1|, or (|Γ2| = |Γ1| and |Δ2| > |Δ1|). Then from
the blocking conditions of the rules, the length of a sequent according to >len

increases on every forward-only branch: see [2] for details. Since GBiInt has the
subformula property, eventually no more formulae can be added to a sequent on
a forward-only branch, and the branch will terminate.

Lemma 2. If a GBiInt-tree has an infinite branch, then the branch has an
infinite number of interleaved left premises of transitional rules.



A Cut-Free Sequent Calculus for Bi-intuitionistic Logic 99

.

.

.

π2 = (Γ2, ϕ2 � ψ2)

.

.

.

πr
2

(→R)
Γ2 � Δ2, ϕ2 → ψ2

.

.

.

ϕ1 � ψ1, Δ1

.

.

.

πr
1

(−< L)
Γ1, ϕ1−< ψ1 � Δ1

.

.

.

Γ0, ϕ0 � ψ0

.

.

.

πr
0

(→R)
π0 = (Γ0 � Δ0, ϕ0 → ψ0)

.

.

.

Fig. 5. Interleaved left premises of transitional rules

Proof. By Lemma 1, single-directional branches must terminate. Thus, an in-
finite branch must involve an infinite number of interleaved left premises of
transitional rules.

The degree of a BiInt formula ϕ is the number of → and −< connectives in
ϕ. The degree of a sequent Γ � Δ is: deg(Γ � Δ) =

∑
ϕ∈sf(Γ∪Δ) deg(ϕ). The

following corollaries directly follow from the definition of the degree of a sequent.

Corollary 1. By the subformula property of GBiInt, the degree of a sequent
can never increase in backward proof search.

Corollary 2. Given two sequents γ1 and γ2, if sf(γ2) � sf(γ1), then deg(γ2) <
deg(γ1). That is, removing some formula ϕ from a sequent during backward proof
search decreases the sequent degree if ϕ is not a subformula of any other formula
in the sequent.

Theorem 1 (Termination). Every GBiInt-tree constructed according to the
strategy of Fig. 4 is finite.

Proof. Suppose for a contradiction that there exists an infinite GBiInt-tree
T . Since every rule has a finite number of premises, then by König’s lemma
T contains a branch B of infinite length. By Lemma 2, B contains an infinite
number of interleaved left premises of transitional rules as shown in Fig. 5.

Let χ ∈ sf(π0) be such that deg(χ) = max({deg(ϕ) | ϕ ∈ sf(π0)}), that is, χ
is one of the subformulae with the maximum degree. Thus χ is not a subformula
of any formula with a larger degree. We show that χ �∈ sf(π2). There are two
cases:

χ �∈ sf(Γ0): Then χ ∈ sf(Δ0) or χ = ϕ0 → ψ0. In both cases, χ �∈ sf(π2).
χ ∈ sf(Γ0): Then it cannot be the case that χ ∈ sf(ϕ1) or χ ∈ sf(ψ1), since

then deg(ϕ1−< ψ1) > deg(χ), contradicting deg(χ) = max({deg(ϕ) | ϕ ∈
sf(π0)}). Therefore, either:



100 L. Buisman and R. Goré

– χ and all its occurrences in subformulae disappear from the sequent at
the premise of (−<L), in which case χ �∈ sf(π2), or

– χ is moved to the RHS by applying (→L) to some χ → τ . But then
deg(χ → τ) > deg(χ), contradicting deg(χ) = max({deg(ϕ) | ϕ ∈
sf(π0)}).

Thus we have χ ∈ sf(π0) and χ �∈ sf(π2). Also, the subformula property
of GBiInt gives sf(π2) ⊆ sf(π0). Together with χ ∈ sf(π0) and χ �∈ sf(π2),
this means sf(π2) � sf(π0). Then by Corollary 2 we have deg(π2) < deg(π0).

Note that the steps indicated by vertical ellipses (
...) in Fig. 5 are arbitrary,

since by Corollary 1 no rule can increase the degree of a sequent. Since we
have deg(π2) < deg(π0), then every sequence of interleaved transitional rule
applications must decrease the degree of the sequent. This can only happen a
finite number of times, until no more transitional rules are applicable. Therefore
our assumption was wrong, and no branch can be infinite. Hence every GBiInt-
tree is finite.

4 Soundness

Instead of showing that each rule application preserves validity downwards, we
show that each rule application preserves falsifiability upwards. Since variables
introduce a two-way flow of information in the GBiInt trees, we separate the
notion of soundness into two: local soundness, applicable to a single rule applica-
tion, and global soundness, which considers the propagation of variables down the
tree. Note that locality here refers to locality in the GBiInt trees, not locality
in the underlying Kripke models.

Definition 2. A logical rule in GBiInt is locally sound iff: if the conclusion is
falsifiable, then some universally branching premise is falsifiable, or all exis-
tentially branching premises are falsifiable.

Lemma 3. Each static and special rule of GBiInt is locally sound.

Proof. We assume the conclusion is falsifiable at w0 inM = 〈W ,R, ϑ〉 and easily
show that some premise is falsifiable at w0 in M = 〈W ,R, ϑ〉: see [2] for details.

We now show global soundness, which relies on the notion of variable conditions
because of the operational nature of GBiInt. Since our transitional rules use the
variables returned from proof search of the left premise to instantiate the right
premise, we need to show that the variables are instantiated and propagated
soundly.

Lemma 4. In any GBiInt tree T , for every sequent γ0 ∈ T : if γ0 is falsifi-
able, then some universally branching, or all existentially branching, premises
are falsifiable, and the variable conditions hold at γ0.

Proof. By induction on the length h(γ0) of the longest branch rooted at γ0.



A Cut-Free Sequent Calculus for Bi-intuitionistic Logic 101

Base case: h(γ0) = 0. So γ0 is an instance of (Id), (⊥L), (�R), or (Ret).
(Id), (⊥L), (�R): The conclusion is never falsifiable, so there is nothing to

show.
(Ret): We show that the conclusion Γ � Δ is always falsifiable, and that

the variable conditions hold at Γ � Δ. We create a model with a single
world w0, and for every atom p ∈ Γ , let ϑ(w0, p) = true, and for every
atom q ∈ Δ, let ϑ(w0, q) = false. An atom cannot be both in Γ and Δ,
since (Id) is not applicable to Γ � Δ.

To show that Γ � Δ is falsifiable at w0, we need to show that w0 � Γ
and w0 =| Δ. For every atom in Γ and Δ, the valuation ensures this. For
every composite formula ϕ, we do a simple induction on its length. Since
(Ret) is only applied when no other rules are applicable, the required
subformula ψ is already in Γ or Δ as appropriate, and ψ falls under the
induction hypothesis. Thus we know that: (i) w0 � Γ and (ii) w0 =| Δ.
Then (i) and the persistence property of BiInt give us that ∀w ∈ W :
w0Rw ⇒ w � Γ . Similarly, (ii) and the reverse persistence property of
BiInt give us that ∀w ∈ W .wRw0 ⇒ w =| Δ. That is, the variable
conditions hold at the conclusion of the (Ret) rule.

Induction step: We assume that the lemma holds for all γ0 with h(γ0) ≤ k,
and show that it holds for all γ0 with h(γ0) ≤ k+1. Consider the rule appli-
cation ρ such that γ0 is the conclusion of ρ. By the assumption of the lemma,
the conclusion γ0 of ρ is falsifiable at some w0 in some modelM = 〈W ,R, ϑ〉.
If ρ is a static or a special rule (universally branching), then the lemma eas-
ily follows from the induction hypothesis. Otherwise, ρ is a transitional rule
(existentially branching). We show the case for (→R), the case for (−<L) is
symmetric:

S1
P1

∣∣∣
∣∣∣ Γ, ϕ � ψ

S2
P2

∣∣∣
∣∣∣ Γ � Δ, ϕ → ψ,

∧
P1

(→R)

S/P:=

⎧
⎪⎪⎨

⎪⎪⎩

S1/P1 if P1 = ε
S2/P2 if right prem created
{Γ}/{Δ, ϕ → ψ} otherwise

∣∣∣∣∣∣

∣∣∣∣∣∣
Γ � Δ, ϕ → ψ

right prem created only if P1 �= ε & ∀Πi ∈ P1.Πi �⊆ {Δ, ϕ → ψ}

Since the conclusion is falsifiable, there is a world w0 such that (i) w0 � Γ
and, (ii) w0 =| Δ,ϕ→ ψ. From the BiInt-semantics of →, (ii) implies that
there is a successor w1 such that: (iii) w0Rw1, (iv) w1 � ϕ and (v) w1 � ψ.
1. To show that the left premise γ1 of (→R) is falsifiable, we need to show

that there exists a world w′ s. t. γ1 is falsifiable at w′. We let w′ = w1.
Then (i), (iv) and (v) give us that γ1 is falsifiable.
Now, γ1 has height(γ1) ≤ k, therefore the induction hypothesis applies
to γ1. By the induction hypothesis, since γ1 is falsifiable at w1, we have
that the variable conditions hold at γ1. In particular, the P condition
holds, giving:

∃Π ∈ P1.∀w ∈ W .wRw1 ⇒ w =| Π (4.1)

Now there are two cases: either the right premise γ2 was created, or it
was not (and there is nothing to show). If it was created, then we need
to show that it is falsifiable by exhibiting a world w′′ such that γ2 is



102 L. Buisman and R. Goré

falsifiable at w′′. We let w′′ = w0. Then, since w0Rw1, we have w0 =| Π
by (4.1). Since Π ∈ P1, then by the semantics of extended formulae, we
have that w0 =|

∧
P1. Together with (i) and (ii), this means that γ2 is

falsifiable at w0. Moreover, the variable conditions hold at γ2, since it
also is falsifiable, and has height(γ2) ≤ k, so the induction hypothesis
applies to it.

2. To show that the variable conditions hold at the conclusion γ0, we do
the case for S; the case for P is dual. We need to show:

∃Σ ∈ S.∀w ∈ W .w0Rw ⇒ w � Σ (4.2)

Since we have shown that the variable conditions hold at the left premise,
we know that in particular P1 �= ε. Then there are two cases: either the
right premise was created, or it was not:
– If the right premise γ2 was created, then its variable conditions hold,

since γ2 falls under the induction hypothesis. This gives us:

∃Σ2 ∈ S2.∀w ∈ W .w0Rw ⇒ w � Σ2.

Thus S := S2 obeys (4.2).
– If the right premise was not created, then we need to show that the

variable conditions hold at the conclusion for S := {Γ}. Now, we
have w0 � Γ by (i), and then the persistence property tells us that
∀w ∈ W .w0Rw ⇒ w � Γ . Thus S := {Γ} obeys (4.2).

Theorem 2 (Soundness). If Γ � Δ is derivable then Γ �BiIntΔ.

Proof. We assume that Γ � Δ is derivable and prove Γ � Δ is not falsifiable.
Then Γ �BiIntΔ follows by definition. By induction on the height k of the deriva-
tion. Base case: A derivation of height 1 can only be an instance of (⊥L), (�R)
or (Id). In each case, γ is not falsifiable. Inductive step: We assume that if
there is a derivation for γ of height ≤ k, then γ is not falsifiable. Using Defini-
tion 1 and Lemma 4, it is easy to show by contradiction that if γ has a derivation
of height ≤ k + 1, then γ is not falsifiable.

5 Completeness

We prove completeness via model graphs following [7]. We say that Γ � Δ is
consistent if ⊥�∈ Γ , � �∈ Δ and Γ ∩Δ = ε. We say that Γ � Δ is closed w.r.t.
a GBiInt rule ρ if either ρ is not applicable to Γ � Δ, or whenever Γ � Δ
matches the conclusion of an instance of ρ, then for some premise Γ1 � Δ1, we
have Γ1 ⊆ Γ and Δ1 ⊆ Δ. We say that Γ � Δ is saturated if it is consistent
and closed w.r.t. the static rules of GBiInt.

Corollary 3. If S
P
∣∣∣∣Γ � Δ is not derivable, then Γ � Δ is consistent for all S

and P.



A Cut-Free Sequent Calculus for Bi-intuitionistic Logic 103

Remark 1. As usual, every sequent has a set of one or more “saturations” due
to the branching of (∧R), (∨L), etc., rules. The usual approach is to non-
deterministically choose one of the non-derivable premises of each such rule.
However, in the presence of the inverse relation, a branch that appears open
may close once we return variables to a lower sequent. Therefore, we need to
temporarily keep all the non-derivable premises, since we do not know which of
the open branches will stay open when we return to a lower sequent.

Lemma 5. For each finite non-derivable sequent Γ � Δ, there is an effective
procedure to construct a finite set ζ = {α1, · · · , αn} of finite saturated sequents,
with Γ ∪Δ ⊆ LHS(αj) ∪RHS(αj) ⊆ sf(Γ ) ∪ sf(Δ) for all 1 ≤ j ≤ n.

Proof. Let T = Γ � Δ. Repeatedly apply static rules to the leaves of T to obtain
new leaves. Keep the non-derivable leaves only; by Corollary 3 they are consis-
tent. By Theorem 1, the saturation process will terminate; let ζ = {α1, · · · , αn}
be the final leaves of T . By the subformula property, LHS(αj) ∪ RHS(αj) ⊆
sf(Γ ) ∪ sf(Δ) for all 1 ≤ j ≤ n.

Definition 3. A model graph for a sequent Γ � Δ is a finite BiInt frame
〈W ,R〉 such that all w ∈ W are saturated sequents Γw � Δw and:

1. Γ ⊆ Γw0 and Δ ⊆ Δw0 for some w0 ∈ W, where w0 = Γw0 � Δw0 ;
2. if ϕ→ ψ ∈ Δw then ∃v ∈ W with wRv and ϕ ∈ Γv and ψ ∈ Δv;
3. if ϕ−<ψ ∈ Γw then ∃v ∈ W with vRw and ϕ ∈ Γv and ψ ∈ Δv;
4. if wRv and ϕ→ ψ ∈ Γw then ψ ∈ Γv or ϕ ∈ Δv;
5. if vRw and ϕ−<ψ ∈ Δw then ψ ∈ Γv or ϕ ∈ Δw′ ;
6. if wRv and ϕ ∈ Γw then ϕ ∈ Γv;
7. if vRw and ϕ ∈ Δw then ϕ ∈ Δv.

Lemma 6. If there exists a model graph 〈W ,R〉 for Γ � Δ, then there exists a
BiInt model M = 〈W ,R, ϑ〉 such that for some w0 ∈ W, we have w0 � Γ and
w0 =| Δ. We call M the counter-model for Γ �BiIntΔ.

Proof. Follows from Definition 3 by induction on the length of Γ � Δ.

We now show how to construct a model graph for Γ �Δ from a consistent Γ �Δ.
Recall from Remark 1 that we need to keep a number of independent versions of
worlds because of the choices arising due to disjunctive non-determinism. We do
this by storing one or more independent connected-components 〈W1,R1〉, · · · ,
〈Wn,Rn〉 in the constructed model graph 〈W ,R〉, and the indices (sorts) of
worlds and relations tell us the connected-component of the graph to which they
belong. We write 〈Wj ,Rj〉[j := i] to relabel the connected component 〈Wj ,Rj〉
with sort j to a connected component 〈Wi,Ri〉 with sort i. Similarly, we also
label each member of the variables P and S, so we can later extract the member
with sort i, corresponding to the component of 〈W ,R〉 with sort i. We write
R-neighbour to mean R-predecessor or R-successor.

Our algorithm in Fig. 6 starts by saturating the root world to obtain one
or more saturated “states”. For each “state” αi, it recursively creates all the



104 L. Buisman and R. Goré

Procedure MGC
Input: sequent Γ � Δ
Output: model graph 〈Wf ,Rf 〉, variables Sf and Pf

1. Let ζ = {α1, · · · , αn} be the result of saturating Γ � Δ using Lemma 5;
2. For each αi ∈ ζ do

(a) Let 〈Wi,Ri〉 = 〈{αi}, {(αi, αi)}〉; let recompute := false;
(b) For each non-blocked ϕ → ψ ∈ Δαi and while recompute = false do

i. Apply (→R) to ϕ → ψ and obtain a left premise π1 = Γαi , ϕ � ψ;
ii. Let 〈W,R〉,S ,P := MGC(π1);
iii. If ∃Πj ∈ P .Πj ⊆ Δαi then

A. Let uj ∈ Wj be the root of the connected component Wj from W;
B. Let G = 〈Wj ,Rj〉[j := i]; add G to 〈Wi,Ri〉, and put αiRiui.

iv. else
A. Let 〈Wi,Ri〉 = 〈ε, ε〉; let recompute := true;
B. Invoke the right premise of (→R) to obtain π2 = Γαi � Δαi ,

∧
P ;

C. Apply (
∧

R) to π2 to obtain m ≥ 1 non-derivable premises γ1, · · · , γm;
D. For each γk, 1 ≤ k ≤ m, let 〈Wk,Rk〉,Sk,Pk := MGC(γk);
E. Let 〈Wi,Ri〉 := 〈

⋃
Wk,

⋃
Rk〉, and Si :=

⋃
Sγk and Pi :=

⋃
Pγk ;

(c) For each non-blocked ϕ−<ψ ∈ Γαi and while recompute = false do
i. Perform a symmetric procedure to Steps 2(b)i to 2(b)ivE.

(d) If recompute = false then let Si := {Γαi} and Pi := {Δαi}.
3. Return 〈

⋃
Wi,

⋃
Ri〉,

⋃
Si,
⋃

Pi

Fig. 6. Model Graph Construction Procedure

R-neighbours and saturates them, and so on. If during the construction of any
R-neighbour, new information is returned from the higher sequents (Step 2(b)iv),
then we delete the entire subtree (connected component of sort i) rooted at αi,
and recreate αi using the new information (Step 2(b)ivB). This re-creates all the
R-neighbours of αi. Otherwise, if none of the R-neighbours of αi return any new
information, or there are no R-neighbours for αi, then Step 2d instantiates the
variables and returns from the recursion. In the latter case, the “state” αi already
has all the required information it can possibly receive from any R-neighbours,
thus αi is final. Note the duality: new information from a single R-neighbour
means that all of the members of a variable were new, while new information at
a “state” αi means that some R-neighbour returned new information.

When we return from MGC, we form the union of the components of the
model graph and the variables from the different “states”, so that the caller of
MGC can extract the appropriate component at Step 2(b)iiiA.

Remark 2. Note that while the counter-model construction procedure keeps the
whole counter-model in memory, this procedure is only used to prove the com-
pleteness of GBiInt. Our procedure for checking the validity of BiInt formulae
(Fig. 4) does not need the whole counter-model, and explores one branch at a
time, as is usual for sequent/tableaux calculi.



A Cut-Free Sequent Calculus for Bi-intuitionistic Logic 105

Theorem 3 (Completeness). GBiInt is complete: if Γ � Δ is not derivable,
then there exists a counter-model for Γ �BiIntΔ.

Proof. If Γ � Δ is not derivable, then Γ � Δ is consistent by Corollary 3. We
construct a model graph for Γ � Δ using the procedure of Fig. 6, and obtain
〈Wf ,Rf 〉. Let 〈W ,R〉 be any connected component of 〈Wf ,Rf 〉. To show that
〈W ,R〉 satisfies the properties of a model graph, we give the cases for properties
1, 2 and 4, the others are similar:

1. Γ ⊆ Γw0 and Δ ⊆ Δw0 for some w0 ∈ W : This holds because w0 is one
of the saturated sequents obtained from Γ � Δ. Moreover, if we delete the
original w0 at Step 2(b)ivA, a final version of w0 is created at Step 2(b)iiiB
which is never deleted.

2. if ϕ → ψ ∈ Δw then ∃v ∈ W with wRv and ϕ ∈ Γv and ψ ∈ Δv: This
holds because we have either created v using (→R) at Step 2(b)iiiB, or had
w fulfill the role of this successor by reflexivity if (→R) was blocked.

4. if wRv and ϕ→ ψ ∈ Γw then ψ ∈ Γv or ϕ ∈ Δv: In our construction, there
are three ways of obtaining wRv, so we need to show that for each case, the
property holds. We first show that ϕ→ ψ ∈ Γv:
1. v was created by applying (→R) to w on some α → β ∈ Δw. Then Γv

also contains ϕ→ ψ.
2. w was created by applying (−<L) to some α−<β ∈ Γv. Then, when the

final version of Γv was created, ϕ→ ψ ∈ Γw was added to the S variable
at Step 2d. There are two cases:
• The right premise π2 of (−<L) was invoked at v. Then S was added

to π2 at v by the symmetric process to Step 2(b)ivB. Thus the up-
dated Γv also contains ϕ→ ψ.

• The right premise of (−<L) was not invoked at v. This means that
∃Σj ∈ S.Σj ⊆ Γv, and the j-th version of v’s predecessor w is chosen
at the symmetric process to Step 2(b)iiiA. But since Step 2d at w
assigns Σj := Γw, then we have Γw ⊆ Γv and thus ϕ→ ψ ∈ Γv.

3. v = w, and wRw by reflexivity. Then Γv = Γw, so ϕ→ ψ ∈ Γv.
In all cases, saturation for v will then ensure that ψ ∈ Γv or ϕ ∈ Δv.

We can obtain a counter-model for Γ �BiIntΔ from 〈W ,R〉 via Lemma 6.

We use di-tree to mean a directed graph such that if the direction of the edges is
ignored, it is a tree. The following corollary follows directly from our procedure
since it never creates proper clusters: see [2].

Corollary 4. BiInt is characterised by finite rooted reflexive and transitive
di-trees.

6 Conclusions and Future Work

Our cut-free calculus for BiInt enjoys terminating backward proof-search and
is sound and complete w.r.t Kripke semantics. A simple Java implementation
of GBiInt is available at http://users.rsise.anu.edu.au/∼linda. The next

http://users.rsise.anu.edu.au/~linda


106 L. Buisman and R. Goré

step is to add a cut rule to GBiInt, and prove cut elimination syntactically.
We are also extending our work to the modal logic S5, and the tense logic
Kt.S4. Our approach of existential branching and inter-premise communication
bears some similarities to hypersequents of Pottinger and Avron [1]. It would
be interesting to investigate this correspondence further. From an automated
deduction perspective, GBiInt is the first step towards an efficient decision
procedure for BiInt. The next task is to analyse the computational complexity
of GBiInt and investigate which of the traditional optimisations for tableaux
systems are still applicable in the intuitionistic case.

We would like to thank the anonymous reviewers for their suggestions.

References

1. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Proc. Logic Colloquium, Keele, UK, 1993, pp. 1–32, OUP (1996)

2. Buisman, L., Goré, R.: A cut-free sequent calculus for bi-intuitionistic logic: ex-
tended version (2007), http://arxiv.org/abs/0704.1707

3. Crolard, T.: Subtractive logic. Theor. Comp. Sci. 254(1–2), 151–185 (2001)
4. Czermak, J.: A remark on Gentzen’s calculus of sequents. NDJFL, 18(3) (1977)
5. Dragalin,A.:Mathematical Intuitionism: Introduction toProofTheory.Translations

of Mathematical Monographs, vol. 68. Cambridge Univ. Press, Cambridge (1988)
6. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal

of Symbolic Logic 57(3), 795–807 (1992)
7. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, et al.

(ed.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)
8. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward

proof search in some non-classical propositional logics. In: Miglioli, P., Moscato,
U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, Springer,
Heidelberg (1996)

9. Horrocks, I., Sattler, U., Tobies, S.: A PSpace-algorithm for deciding ALCNIR+ -
satisfiability. LTCS-98-08, LuFG Theor. Comp. Sci, RWTH Aachen, (1998)

10. Howe, J.M.: Proof search issues in some non-classical logics. PhD thesis, University
of St Andrews (1998)

11. Rauszer, C.: A formalization of the propositional calculus of H-B logic. Studia
Logica 33, 23–34 (1974)

12. Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intu-
itionistic logic. Dissertationes Mathematicae, 168, Inst. of Math, Polish Academy
of Sciences (1980)

13. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H.
(ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, Springer, Heidelberg (1998)

14. Śvejdar, V.: On sequent calculi for intuitionistic propositional logic. Commenta-
tiones Mathematicae Universitatis Carolinae 47(1), 159–173 (2006)

15. Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. Studies in Logic and
the foundations of Mathematics. North-Holland, Amsterdam (1969)

16. Urbas, I.: Dual-intuitionistic logic. NDJFL 37(3), 440–451 (1996)
17. Uustalu, T.: Personal communication. via email (2004)
18. Uustalu, T.: Personal communication. via email (2006)
19. Uustalu, T., Pinto, L.: Days in logic ’06 conference abstract. Accessed on 27th

October 2006, http://www.mat.uc.pt/∼kahle/dl06/tarmo-uustalu.pdf
20. Wolter, F.: On logics with coimplication. JPL 27(4), 353–387 (1998)

http://arxiv.org/abs/0704.1707
http://www.mat.uc.pt/~kahle/dl06/tarmo-uustalu.pdf


Tableaux with Dynamic Filtration for Layered

Modal Logics�

Olivier Gasquet and Bilal Said

Université Paul Sabatier, IRIT - LILaC,
118 route de Narbonne, F-31062 Toulouse cedex 9, France

Abstract. In this paper we prove that the satisfiability problem for
the class of what we call layered modal logics (LML) is in NEXPTIME,
and hence, is decidable. Roughly, LML are logics characterized by se-
mantical properties only stating the existence of possible worlds that
are in some sense “further” than the other. Typically, they include var-
ious confluence-like properties, while they do not include density-like
properties. Such properties are of interest for formalizing the interaction
between dynamic and epistemic modalities for rational agents for exam-
ple. That these logics are decidable may be not very surprising, but we
show that they are all in NEXPTIME, some of them being known to be
NEXPTIME-complete. For this, we give a sound and complete tableau
calculus and prove that open tableaux are of exponential size. This can-
not be done by using usual filtration which cannot cope with confluence.
We introduce here a new technique we call dynamic filtration that allows
to filtrate worlds one layer at a time keeping the total number of nodes
within an exponential bound.

Keywords: Layered Modal Logic, Tableau, Dynamic Filtration, Com-
plexity, Satisfaction problem.

1 Introduction

Some AI problems, like formalizing interaction of rational agents in the BDI
(Belief-Desire-Intention) framework, or like complex ontologies require modal
logics or description logics whose models possess complex properties which can-
not be handled by tree-like structures (like it is the case for logics such as
K,S4,S5,PDL,. . . ). A typical example being the property associated with the
“No forgetting” axiom (�1�2p → �2�1p). Moreover experiment is needed and
underlying logics can vary a lot. Hence, general results about decidability and
complexity of such logics are of high interest. As well, theoretical tools that al-
low to investigate them are also of interest. At the moment, there are no general
complexity results for such logics.

� This work has been partially supported by the project ARROWS of the French
Agence Nationale de la Recherche.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 107–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



108 O. Gasquet and B. Said

Concerning theoretical tools, standard filtration ([10]) is one of them and
is powerful enough to prove decidability (and even f.m.p.) of many standard
logics (K,K4,K5,. . . ), but for some complex logics, it often fails to establish
decidability and even when it does, it does not give tight upper bounds on the
complexity. Further refinements like selective filtration of [6] permits to state
about various logics (e.g. [12] proves PSPACE-completeness of many extensions
of K4), and more recently, filtration via bisimulation was defined and used in
[13] to establish by a complex proof the f.m.p. of a wide class of multi-modal
logics (mainly full and weak products) but without stating explicit upper bounds
to the satisfiability problem. Tableaux are also a tool for this task, in [9] they
first permitted to show that the complexity of S4 is in PSPACE (hardness being
proved by a reduction to QBF). In the present work, tableaux are thus used
more as a theoretical tool for investigating complexity of modal logics than as a
way of designing tractable decision procedures.

Still, there are logics that are not in the scope of the methods mentionned
above, a typical example is that of logic K plus confluence (corresponding to
axioms ��p → ��p) for which standard filtration fails. Tableaux may be easy
to design for such logics, but they may be non-terminating and even if not, they
may overestimate the complexity.

In this paper, we investigate logics we call layered and address their complexity
by marrying tableaux with a stepwise filtration-like operation. This operation
allows to keep the size of the tableau within an exponential of the length of the
input formula. This bound is the best possible for the class of layered logics since
one of them is known to be NEXPTIME-complete. Roughly speaking, layered
logics are non-transitive confluent ones (where confluent is to be understood in
a wide sense). They include properties like confluence (mono and multi modal),
star-free PDL with converse and confluent programs, models containing bounded
cycles, and we will see that with some adjustements they can cope with symmetry
and converses, and with permutation. This work is on the continuation of the
previous [3], [5], [4] and [7].

We believe that this technique may extend to other modal logics that are
characterized by some class of frames which are directed acyclic grahs. This is
subject of ongoing work.

In section 1, we give the necessary backgrounds, in section 2, we define layered
modal logics, then in section 3 we design simple tableaux for these logics that
we improve in section 4 to dynamically filtrated tableaux in order to prove the
membership of the satisfaction problem for layered logics by means of tableaux
calculi. We conclude with some discussion about the extension of the range of
dynamic filtration.

2 Settings

Definition 1 (Language). The language of a modal logic is defined by the fol-
lowing: let P be a set of propositional symbols, I a set of indexes, and as usual let



Tableaux with Dynamic Filtration for Layered Modal Logics 109

⊥ denotes falsity. The set FORM of formulas (we will only consider negative
normal form or NNF) is given by the BNF:

Φ ::= ⊥|p|¬p|(Φ ∧ Φ)|(Φ ∨ Φ)|�aΦ|�aΦ(where p ∈ P and a ∈ I)

and as usual, ( → ) abbreviates (¬ ∨ ), �0
aφ is φ and �n+1

a φ is �a�n
aφ. Given

a formula φ, we denote by |φ| the length of φ.

Definition 2 (Modal degree). The modal degree of a formula φ is denoted by
d(φ) and is inductively defined as usual by:

– d(p) = d(¬p) = d(⊥) = 0 (for any proposition p),
– d(�aφ) = d(�aφ) = d(φ) + 1,
– d(φ1 ∧ φ2) = d(φ1 ∨ φ2) = max(d(φ1), d(φ2)).

The modal degree of a finite set S of formulas is denoted by d(S) and is equal
to maxφ∈S(d(φ)).

Definition 3 (Subformulas). As usual, given a formula A, the set of subfor-
mulas of A (in NNF) denoted by SF (A), is recursively defined as:

– SF (p) = {p}
– SF (⊥) = {⊥},
– SF (¬p) = {¬p, p},
– SF (B ∗ C) = {B ∗ C} ∪ SF (B) ∪ SF (C) (where ∗ ∈ {∧,∨}),
– SF (�aB) = {�aB} ∪ SF (B) and SF (�aB) = {�aB} ∪ SF (B).

Definition 4 (Relations). Given a relation R over a set W , we denote by
R∗ its reflexive and transitive closure, by R+ its transitive closure, by −R its
converse (i.e. (x, y) ∈ −R iff (y, x) ∈ R), and by (R∪−R) the symmetric closure
of R. Finally, given a family (i.e. a set) of relations R = {Ra : a ∈ I}, we will
also denote by R the relation consisting of the union of the relations of R, i.e.
R = (

⋃
a∈I Ra).

Remark 1. We will also use the fact that a connected graph without isolated
points (see below) may be represented by the set of its edges, i.e. by a conjunction
of literals of the form Ra(x, y).

Definition 5 (Semantics: frames, models and satisfaction)

– (Multirelational Kripke) frames are graphs (W,R), where R is a family of
binary relations indexed by I, and with a root r: any x ∈ W is accessible
from r via (R∪−R)∗,

– (Kripke) models are pairs (F,m) where F is a frame and m a meaning
function (m : P �→ 2W ), such a model is said to be based on F .

– Pointed models are pairs (M,x) where M is a model (W,R) and x ∈W .
– That a formula A is satisfied by some pointed model (in symbols M,x |= A)

is defined recursively as follows (we only give the clauses concerning modal
connectives):

• M,x |= �aψ iff ∃y : Ra(x, y) &M, y |= ψ;
• M,x |= �aψ iff ∀y : Ra(x, y) ⇒M, y |= ψ.



110 O. Gasquet and B. Said

Definition 6 (Frame formula). A frame formula Φ(x1, . . . , xn) is a first-order
formula (the xi’s are its free variables) which is a conjunction of literals Ra(x, y)
(with a ∈ I), or equivalently a finite set of such literals.

Definition 7 (Satisfiability Problem). The satisfiability problem w.r.t. a
class C of frames: given a formula A, does there exist some pointed model M,x
based on some frame of C and such that M,x |= A? This problem is referred to
as C-satisfiability problem and the set of C-satisfiable formulas will be denoted by
Sat(C).

Definition 8 (Vector notation). For the sake of brevity, we introduce here a
vector notation which is as follows: (given the variables x1, . . . , xn, the variable
x, the functions H1, . . . , Hm and the function H)

– The sequence (x1, . . . , xn) will be abbreviated by −→x ;
– H(x1, . . . , xn) will be abbreviated by H(−→x );
– the sequence (H(x1), . . . , H(xn)) will be abbreviated by H.−→x ; (note the dot)
– the sequence (H1(x), . . . , Hm(x)) will be abbreviated by

−→
H.x;

– and the sequence (H1(−→x ), . . . , Hm(−→x )) will be abbreviated by
−→
H.−→x .

Definition 9 (Subframe/subgraph). Given a frame F = (W,R), a first-
order formula Φ(−→x ) whose free variables are x1, . . . , xn and given an assignment
σ : {x1, . . . , xn} �→ W , we consider that σ(F ) denotes the subframe (w, r) of F
where w = {σ(x1), . . . , σ(xn)} and ra = (Ra)|w (i.e. the restriction of Ra to
w). We say that the subframe σ(F ) satisfies Φ (in symbols F |= Φ(σ.−→x )) iff
Φ(σ(x1), . . . , σ(xn)) is true in F .

Definition 10 (Depth). Given a frame F = (W,R) with root r represented by
a set S of literals Ra(x, y) or by a frame formula Φ, given x ∈ W , we define the
depth in F (or in S) denoted by δF (x) (or δS(x) or δΦ(x)) as the length of the
shortest path from r to x. Inductively:

– δF (r) = 0;
– δF (x) = minRa(y,x)∈R(δF (y) + 1)

3 Layered Modal Logics

We come to the class of frames we investigate:

Definition 11. An LF -layered frame F = (W,R) is a finite frame (of root r)
which verifies a finite set LF of layer formulas of the form:

∀−→x : ∃−→y : φ(−→x ) → ψ(−→x ,−→y )

where φ and ψ are frame formulas and with the constraints given below. But
first notice that such a formula may be seen as a rule which rewrites a graph
by adding nodes and edges to it, φ describing the left-hand side of the rule (the
graph to be rewritten) while φ∧ψ describes the right-hand side (the result of the
rewriting). Constraints on φ and ψ are the following:



Tableaux with Dynamic Filtration for Layered Modal Logics 111

(i) φ(−→x ) is a conjunction (that we will identify with a set) of literals Ra(xi, xj)
(where xi, xj ∈ −→x and a ∈ I);

(ii) ψ(−→x ,−→y ) is a conjunction of literals Ra(xi, yj) or Ra(yj , yk) (where xi ∈ −→x ,
yj , yk ∈ −→y , j < k and a ∈ I);

(iii) ∀yj ∈ −→y : ∃xi ∈ −→x : ∃a ∈ I : (Ra(xi, yj)) is a conjunct of ψ; we exclude
properties stating the existence of isolated nodes;

(iv) δφ∧ψ(yk) > δφ∧ψ(xj) for all yk ∈ −→y and all xj ∈ −→x : the depth of existential
nodes will always be stricly greater than that of their parents nodes, hence,
their modal degree will be stricly less.

Examples of such layered formulas are:

1. Seriality (∀x : ∃yR(x, y));
2. Bimodal confluence (∀x, y, z: ∃u : (R1(x, y)&R2(x, z))→(R2(y, u)&R1(z, u))).

Definition 12. A SL-formula (skolemized layer formula) skol(χ) is the result
of the skolemization of a layered formula χ = ∀−→x : ∃−→y : φ(−→x )→ ψ(−→x ,−→y ):

skol(χ) = ∀−→x : φ(−→x )→ ψ(−→x ,−→H.−→x )

with
−→
H.−→x = (H1(−→x ), . . . , Hk(−→x )) (and k = Card(−→y )) Since ψ is a conjunction,

skol(χ) is equivalent to the conjunction of formulas of the form

(i) either ∀−→x : φ(−→x ) → Ra(xi, Hj(−→x ))
(ii) or ∀−→x : φ(−→x )→ Ra(Hi(−→x ), Hj(−→x )).

We will henceforth consider SL-formulas as being of one of the forms (i) and (ii).
By extension, SLF is the set of type (i) and type (ii) formulas corresponding

to a set LF of layered formulas.

We will see further that � formulas also are treated by the introduction of
Skolem functions.

The SLF’s for

– Seriality it is ∀xR(x,H(x))
– Confluence they are ∀x, y, z : ((R1(x, y) & R2(x, z) → R2(y,H(x, y, z))) and
∀x, y, z : ((R1(x, y) &R2(x, z)) → R1(z,H(x, y, z)));

Remark: It is well-known that A ∈ Sat(LF ) iff A ∈ Sat(skol(LF )), since skolem-
ization preserves satisfiability.

Definition 13 (Layered logics). Layered logics are those characterized by a
class of SLF-layered frames i.e. finite rdag veryfing a set SLF of SL-formulas
of type (i) and (ii).

That a given logic is or is not a layered one is a natural question (note that
layered logics are semantically defined). For example, we know that modal logic
K+confluence is characterized by the class of confluent frames, and since the
first-order formula expressing confluence is a layer formula then K+confluence
is a layered logic. But in general, given a set of properties, checking if they are
equivalent with some set of layer formulas is likely to be undecidable although we
did not formally prove this.



112 O. Gasquet and B. Said

The main result of the next sections is that the SLF -satisfiability problem for
any SLF -layered logic is in NEXPTIME and hence is decidable. More precisely,
it is decidable by a non-deterministic Turing machine in time O(2c.|φ|) where c
is a constant.

4 Simple Tableaux for Layered Logics

Tableaux calculi may standardly be seen either as a sequent-like construction
(see e.g. [8] and [11]) or as a stepwise “quasi-model” construction as done in e.g.
[1]. We adopt this second view in the following. This step-by-step construction
may be seen as rewriting a graph, starting from some initial node containing
the input formula, and using some appropriate set of rewriting rules (or simply
rules) which only add elements (formulas, nodes, edges) to the current structure.

Definition 14 (Partial tableau). The structure called a partial tableau is a
triple T = (N,R, Φ) where: N is a finite set of nodes, R is a family of binary
relations over N and indexed by I (hence (N,R) is a finite frame) and Φ is a
function that maps each element of N to some set of formulas (Φ : N → 2FORM).
Given two such functions Φ and Ψ , we define Φ ∪ Ψ by: Φ ∪ Ψ(x) =

– Φ(x) ∪ Ψ(x) if x ∈ dom(Φ) ∩ dom(Ψ);
– Φ(x) if x ∈ dom(Φ) and x �∈ dom(Ψ);
– Ψ(x) if x ∈ dom(Ψ) and x �∈ dom(Φ).

A tableau is a partial tableau on which no rule applies, more precisely a tableau
is the least fixed point of a sequence of partial ones.

Definition 15 (Skolemizing �). Let (N,R,Φ) be a partial tableau for the
input formula A, and let SF (A) denote the set of subformulas of A (def. 3).
For each triple (a, x,B) ∈ I ×N×SF (A), we associate a Skolem term �a(B, x)
(intuitively this term will denote one world accessible from x and making B true,
thus making �aB true at x).

A rule may be seen as a function ρ applied to a partial tableau Ti and computing
what new elements (denoted by νρ(Ti)) are to be added to Ti in order to obtain
Ti+1 (in the case of rule ∨ this function non-deterministically chooses one of the
possible results) and this function gives a triple νρ(Ti) = (n, r, f) (respectively
the sets of new nodes, new a-edges (for each a ∈ I) and new pairs node-formula).

Definition 16 (Rule application). Let Ti = (Ni,Ri, Φi) be a partial tableau,
and let ρ be a rule, to denote that Ti+1 is obtained from Ti by applying rule ρ,
we write:

Ti+1 = ρ(Ti) = Ti ∪ νρ(Ti)

Definition 17 (Set of rules). For each possible rule ρ, we indicate the result
of νρ(Ti) as a triple (ni, ri, fi). Variables u and v are implicitely universally
quantified over Ni. Moreover, we indistinctly use B ∈ Φ(u) or (u,B) ∈ Φ.



Tableaux with Dynamic Filtration for Layered Modal Logics 113

– ν⊥(Ti) =
⎧
⎩∅, ∅, {(u,⊥)}

⎫
⎭ for all B,¬B ∈ Φi(u)

– ν∧(Ti) =
⎧
⎩∅, ∅, {(u,B), (u,C)}

⎫
⎭ for all (B ∧ C) ∈ Φi(u)

– ν∨(Ti) =
⎧
⎩∅, ∅, {(u,Du,B∨C)}

⎫
⎭ for all (B ∨ C) ∈ Φi(u)

if B,C �∈ Φi(u) then Du,B∨C is choosen non-deterministically among B
and C,
else Du,B∨C is any of B and C which is already in Φi(u)

– ν�a(Ti) =
⎧
⎩∅, ∅, {(v,B)}

⎫
⎭ for each a ∈ I, for all u, v such that Ra(u, v)

and �aB ∈ Φi(u)
– ν�a(Ti) =

⎧
⎩{�a(B, u)}, {(u,�a(B, u))}, {(�a(B, u), B)}

⎫
⎭ for each a ∈ I

and for all �aB ∈ Φi(u); NB: δ(�a(B, u)) > δ(u).
– If the formula ψ = ∀−→x : Φ(−→x ) → Ra(xk, Hl(−→x )) is in SLF ,

and if for some assignment σ of −→x over Ni we have Ti |= Φ(σ.−→x ),
then

if ∃xj ∈ −→x : d(Φi(σ(xj))) > 0 1

then νψ(Ti) =
⎧
⎩{Hl(σ.−→x )}, {(σ(xk), Hl(σ.−→x ))}, ∅

⎫
⎭

NB: δ(Hl(σ.−→x )) > δ(σ(xj));
else =

⎧
⎩∅, {(σ(xk), σ(xj))}, ∅

⎫
⎭ for each xk, xj ∈ −→x ;

– If the formula ψ = ∀−→x : Φ(−→x ) → Ra(Hk(−→x ), Hl(−→x )) is in SLF ,
and if for some assignment σ of −→x over Ni we have Ti |= Φ(σ.−→x ),
then

if ∃xj ∈ −→x : d(Φi(σ(xj))) > 0
then νψ(Ti) =

⎧
⎩{Hk(σ.−→x ), Hl(σ.−→x )}, {(Hl(σ.−→x ), Hl(σ.−→x ))}, ∅

⎫
⎭

NB: δ(Hl(σ.−→x )) > δ(Hk(σ.−→xj)) > δ(xj);
else =

⎧
⎩∅, {(σ(xk), σ(xj))}, ∅

⎫
⎭ for each xk, xj ∈ −→x .

Remark 2.

– If A is the input formula, ∀x ∈ Ni : Φi(x) ⊆ SF (A).
– Since the set SLF is finite, so are each ni.
– In the last two “else” part, no new node is added (ni is empty).

Definition 18 (Meta-rules). A direct examination of the rules above shows
that all rules ρ except the diamond rule and those of the form νψ for ψ ∈ SLF
are terminating on partial (and hence finite) tableaux, i.e. there exists an integer
n such that ρn(Ti) = ρn+1(Ti) (where ρn+1(Ti) = ρ(ρn(Ti))), we denote by ρ∗

the iteration of ρ up to the least fixed point in these cases.
Let us define the following meta-rules called Sat�, � and C:

– νSat� = (ν⊥∪ν∧∪ν∨∪(
⋃

a∈I ν�a))∗ (classical saturation and � propagation:
terminates since frames and formulas are of finite size),

– ν� = (
⋃

a∈I ν�a) (without star!),
– νC = (

⋃
ψ∈SLF νψ).

1 This condition stops the computation when nodes only contains non modal formulas.



114 O. Gasquet and B. Said

Definition 19 (Simple tableaux). A simple tableau T for an input formula
A is a least fixed point (we will prove later that this fixed point is finite) of a
sequence T0 = (N0,R0, Φ0), T1, . . . where2:

– N0 = {r} (the root), R0 = ∅ and Φ0(r) = {A};
– Ti+1 = Sat�(C(�(Ti))), where C, Sat� and � are the meta-rules given

above.

Definition 20 (Tableau closure). A tableau is closed if some node in it con-
tains ⊥; it is open otherwise.

Definition 21 (First occurrence). Let x ∈ N , let fst(x) = minj(x ∈ Nj)),
this is the index of introduction of x in N . Hence x ∈ Ni iff i ≥ fst(x).

Proposition 1. Let A be an input formula (d(A) being its modal degree), and let
T = (N,R) be a (possibly partial) simple tableau from a sequence T0, . . . , Tn, . . .
with root r:

1. For all j > i ≥ fst(y) we have δTi(y) = δTj (y): once set, the depth of a node
do not change at further iteration, we will then denote it by δ(y);

2. for all j > i ≥ fst(y) we have dTi(y) = dTj (y): idem but for the modal degree
of nodes;

3. if δ(x) = minxk∈−→x (δ(xk)) and y = H(−→x ) then d(y) ≤ d(x) − 1;
4. for all y we have fst(y) ≤ δ(y);
5. for all y we have 0 ≤ d(y)+δ(y) ≤ d(A) and as a consequence fst(y) ≤ d(A):

the algorithm stops after at most d(A) iterations.

Proof.

1. Since shortest path cannot shrink due to constraints on rules.
2. Since classical saturation and propagation of boxed formulas are performed

at each iteration, and since nodes introduced later are of strictly greater
depth.

3. Since rules that add formulas to new nodes (� and � rules) stricly decrease
the modal degree of formulas; thus along a path (r, y) of length p, node y
will only receive formulas of degree at most d(A) − p. Hence, formulas of
highest degree in y will come from a shortest path, i.e. from x.

4. By induction on fst(y): If fst(y) = 0 then y = r and δ(r) = 0; if fst(y) = p+1
then there exist x1, . . . , xn ∈ Np and xk �∈ Np−1 (otherwise y would be in
Np) with y = H(−→x ). Then since δ(y) > δ(xk) and δ(xk) ≥ fst(xk) = p (by
IH) hence δ(y) ≥ p+ 1.

5. Again by induction on fst(y). If fst(r) = 0 then y = r, d(r) = d(A) and
δ(r) = 0: done. Suppose fst(x) = p+1 then for some x1, . . . , xn we must have
x = H(−→x ). Let δ(x) = minxk∈−→x (δ(xk)), rules ensure that δ(y) = δ(x) + 1
and since d(y) ≤ d(x)− 1 we have d(y)+ δ(y) ≤ d(x)+ δ(x) ≤ d(A) (by IH).

2 Due to rule ∨, the are several such sequences.



Tableaux with Dynamic Filtration for Layered Modal Logics 115

Lemma 1 (Completeness and soundness of simple tableaux). Let A be
a formula and S a set of SLF-formulas, then A is SLF-satisfiable if and only if
there exists an open tableau T = (Sat�(C(�)))∗(T0) where C is the set of rules
corresponding to the set S.

Proof. Completeness is immediate by comparison with naive tableaux (those
with purely non-deterministic but fair strategy where all rules are applied only
non-deterministically but eventually at some iteration) which are trivially com-
plete since they reduce to model construction. Now, it can be checked that the
strategy Sat�(C(�))∗ is fair hence if some simple tableau is open then so is
some naive one and completeness follows from that of naive tableaux.

Soundness is easily proved by induction on iterations and with the help of
proposition 1. It remains to prove that frame of an open simple tableau is
an SLF-frame: we have to prove that (W,R) |= SLF . Let ψ = (∀(φ(−→x ) →
Ra(xj , Hk(−→x ))) be in SLF , and suppose that for some assignment σ over W ,
we have (W,R) |= φ(σ.−→x ) and let m = maxxi∈−→x (fst(σ(xi))) ⊆ Nq) (m is the
first iteration at which the all elements of σ.−→x have been introduced). There are
two cases:

(a) If ∃xp : σ(xp) ∈ Nm & d(Φm(σ(xp))) > 0 then (σ(xj), Hk(σ.−→x )) ∈ (Ra)m+1

by then-part of rule νψ , hence (σ(xj), Hk(σ.−→x )) ∈ Ra;
(b ) If ∀xp : σ(xp) ∈ Nm ⇒ d(Φm(σ(xp))) = 0

then we are done since (σ(xj), σ(xj)) ∈ Ra by else-part of the same rule.

A similar reasoning holds in the case of SL-formulas of type ii since:
in case (a) (Hj(σ.−→x ), Hk(σ.−→x )) ∈ Ra by then-part,
and in case (b) (σ(xj), σ(xk)) ∈ Ra by else-part.

Lemma 2. Layered modal logics are decidable by proposition 1 and by complete-
ness and soundness.

Proof. Since only finitely many nodes are added at each iteration and since there
are at most d(A) iterations.

On another hand, at least one layered modal logic (e.g. K+confluence, see [7]) is
known to have an NEXPTIME-hard satisfiability problem. Hence the best we can
do for this class of logics is to prove their membership in NEXPTIME. In order to
do so, we develop and apply, in the sequel, tableaux with dynamic filtration.

5 Dynamically Filtrated Tableaux

Starting from a partial tableau Ti = (Ni,Ri, Φi), rules of simple tableaux add
new nodes (set ni) and edges (set ri) at iteration i+ 1 in order to fulfill seman-
tics of � connectives and existential properties stated by SL-formulas. But for
proving our complexity result, we need to make sure that each node added is
unique otherwise we would have multiple copies of the same node (i.e. of its asso-
ciated set of formulas). Thus at iteration i+1 we identify those new nodes when
they are equivalent w.r.t. the input formula. This justify the name of dynamic
filtration.



116 O. Gasquet and B. Said

Definition 22 (Dynamic filtration). Let Ti be a partial tableau Ti =
(Ni,Ri, Φi) (NB: in what follows we will most of the time omit the index i
and denote Ti by T ,. . . ) and let T ′ = (N ∪ n,R∪ r, Φ ∪ f) = Sat�(C(�(T ))).

Let us define the following equivalence relation ≡i (we will also omit the ex-
ponent i henceforth) over N ∪ n:
x ≡ y iff and f(x) = f(y) for x, y ∈ n and x = y for x ∈ N (this is just to make
≡ total over N ∪ n),
≡ (x) denotes the equivalent class of x;
(n)≡ = {≡ (x) : x ∈ n} is the set of all classes ≡ (x).

Then we set the dynamic filtration of T ′ to be DF (T ′) = (N ′,R′, Φ′) with:

– N ′ = N ∪ (n)≡;
– R′ = R∪(≡ ◦ r ◦equiv) 3, hence an edge (≡ (x),≡ (y)) is added to R either

if x ∈ N (since then ≡ (x) = x) and (x, y) ∈ r, or if x, y ∈ n and (x, y) ∈ r;
– Φ′ = Φ ∪ (f)|(n)≡ .

Definition 23 (Filtrated tableaux). A filtrated tableau T for an input for-
mula A is a least fixed point (we will prove later that this fixed point is finite) of
a sequence T0 = (N0,R0, Φ0), T1, . . . where4:

– N0 = {r} (the root), R0 = ∅ and Φ0(r) = {A};
– Ti+1 = DF (Sat�(C(�(T )))), where C, Sat� and � are the meta-rules given

above and DF is the dynamic filtration operation.

Proposition 2. Proposition 1 holds as it is for filtrated tableaux as well, as it
can easily be checked.

Proposition 3. As a direct consequence of the definitions above, at each itera-
tion, only an exponential number of nodes is added:
Card({x : x ∈ Ni & fst(x) = k for some k ≤ i}) ≤ Card(≡i) ≤ 2Card(SF (A)) =
2c.|A| for some constant c.

Lemma 3. Let T = (N,R, Φ) be an open tableau for A then T contains at most
exponentially many nodes each of size bounded by |A|.

Proof. From proposition 1, ∀x ∈ N : 0 ≤ fst(x) ≤ d(A) ≤ |A| and by prop. 3
there are at most 2c.|A| nodes for each iteration, hence T contains at most
|A|.2c.|A| nodes which is majorated by 2c′.|A| for some constant c′. Note that
nodes are of maximal size |A| since Φ(x) ⊆ SF (A).

Lemma 4 (Soundness and completeness). Filtrated tableaux are sound and
complete for layered modal logics.

Proof. Let U = (NU ,RU , ΦU ) be a simple tableau fixed point of a sequence
U0, . . . , Un and let T = (NT ,RT , ΦT ) be the filtrated tableau fixed point of the
sequence DF (U0), . . . , DF (Un). Let MU = (NU ,RU ,mU ) be the Kripke model

3 Where ◦ denotes composition: R ◦ S(x, y) ⇔ ∃z : R(x, z) & S(z, y).
4 Due to rule ∨, the are several such sequences.



Tableaux with Dynamic Filtration for Layered Modal Logics 117

defined by mU (p) = {x ∈ NU : p ∈ ΦU (x)} and MT defined similarly. If we
set the function π as π(x) =≡fst (x) from MU onto MT , it is straightforward
to check that π is a p-morphism (i.e. a pseudo-epimorphism) from MU to MT :
x ∈ NU and π(x) ∈ NT satisfy the same propositions, and (x, y) ∈ RU iff
(π(x), π(y)) ∈ RT , thus x and π(x) satisfy the same formulas. Hence filtrated
tableaux are sound and complete for layered logics since so are simple tableaux.

As a direct consequence of lemmas 4 and 3, we have:

Theorem 1. SLF -satisfiability is decidable in non-deterministic exponential
time.

Proof. The following non-deterministic algorithm does the job: guess a tableau
for A and check whether it is open (this can be done in linear time in the size
of the tableau, hence in time bounded by O(2c.|φ|).

6 Discussion and Conclusion

Some properties cannot directly be considered as layered ones, we discuss some
of them and show how they can still be handled.

– The case of symmetry. In order to treat such a property, the rule � must be
modified as follows:

ν�a(Ti) =
⎧
⎩{�a(B, u)}, {(u,�a(B, u)), (�a(B, u), u))}, {(�a(B, u), B)}

⎫
⎭

for each a ∈ I and for all �aB ∈ Φi(u): i.e. add the symmetric edge at the
same time a new node is introduced, this respect the strict increase of node
depth (condition (iv) of definition 11) 5. The same kind of adjustement can
be used for tense forms of layered logics (i.e. where converse−a of each a ∈ I
is allowed.

– The case of one permutation property like e.g.

∀x, y, z : ∃u : (R1(x, y) &R2(y, z))→ (R2(x, u) &R1(u, z))

corresponding to the axiom �2�1p → �1�2p can be handled by the same
kind of adjustement of the �2 rule; use the rule below which is essentially
(we omit the case of empty nodes):

If (xj , xj+1) ∈ R1 for 0 ≤ j < n and �2B ∈ Φi(xn) then
νperm(Ti) = {

{Hj(−→x ) : 0 ≤ j < n},
{(xj , Hj(−→x )) : 0 ≤ j ≤ n} ∪ {(Hj(−→x ), Hj+1(−→x )) : 0 ≤ j < n},
{(Hn(−→x ), B)} }

5 Of course, for logic KB on its own, our present method is not interesting since it is
known to have a PSPACE satisfiability problem.



118 O. Gasquet and B. Said

with a modified definition of δ such that depth along R2 is “heavier” than
along R1, this ensures that in the rule, all Hj(−→x ) are deeper than xj ’s and
is harmless w.r.t. proposition 1 of the present paper. Formulated in this way,
the above rule handled permutation while respecting the increase of nodes
depth which is the main point on which rely our complexity result.

We have defined a new class of modal logics called layered because their models
can be constructed layer by layer. These logics are specified by properties of their
models which are thus called layered.

We proved they are decidable and that their satisfiability problem lies in
NEXPTIME. This is the best possible lower bound since some of them are
known to be complete for this complexity class.

To achieve this, we designed a sound, complete tableau calculus that permitted
us to ensure the small model property of layered logics. With the help of various
possibilities (modification of the � rules, of the depth definition,. . . ) we believe
that this technical tool may extend to other logics and even to some transitive
layered logics by introducing loop tests over whole subgraphs. This is subject of
ongoing work.

References

1. Baldoni, M.: Normal Multimodal Logics With Interaction Axioms. In: Basin, D.,
D’Agostino, M., Gabbay, D.M., Matthews, S., Viganò, L. (eds.) Labelled Deduc-
tion. Applied Logic Series, vol. 17, pp. 33–53. Kluwer Academic Publisher, Boston
(2000)

2. Chellas, B.F.: Modal Logic: an introduction. Cambridge Univ. Press, Cambridge
(1980)

3. Castilho, M.A., del Farinas Cerro, L., Gasquet, O., Herzig, A.: Modal Tableaux
with Propagation Rules and Structural Rules. Fundamenta Informaticae 32(3-4),
281–297 (1997)

4. del Fariñas Cerro, L., Gasquet, O.: A general framework for pattern-driven modal
tableaux. Logic Journal of the IGPL 10(1), 51–84 (2002)

5. Del Fariñas Cerro, L., Gasquet, O.: Tableaux Based Decision Procedures for Modal
Logics of Confluence and Density. Fundamenta Informaticae 40(4), 317–333 (1999)

6. Gabbay, D.M.: Selective filtration in modal logic. Theoria 30, 323–330 (1970)
7. Gasquet, O.: On the influence of confluence in modal logics. Fundamenta Infor-

maticae, 70(3) (2005)
8. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,

Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, Kluwer
Academic Publishers, Boston (1999)

9. Ladner, R.: The computational complexity of provability in systems of modal logic.
SIAM Journal on Computing 6, 467–480 (1977)

10. Lemmon, E. J., Scott, D. S.: An introduction to modal logic. Oxford, Blackwell,
(1977)

11. Massacci, F.: Single step tableaux for modal logics: methodology, computations,
algorithms. Journal of Automated Reasoning, vol. 24 (2000)

12. Shapirovsky, I.: On PSPACE-decidability in transitive modal logics. Proc.
AiML’05, (2005)

13. Shethman, V.: Filtration via bisimulation. Proc. AiML’05 (2005)



N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 119–132, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

The Neighbourhood of S0.9 and S1 

Roderic A. Girle 

Philosophy Department, University of Auckland 
Auckland, New Zealand 

r.girle@auckland.ac.nz 

Abstract. Considerable work has been undertaken on the neighbourhood se-
mantics for S1 but little on S0.9. In this paper we use tableaux to represent the  
model-set / model-system neighbourhood semantics for both S1 and S0.9 and 
some other nearby systems.1 S0.9 is often seen as a more “natural” logic in the 
sequence: S0.5 to S0.9 to S2 to S3 than S1. This perception is discussed in 
terms of the interpretation of alternate worlds or model-sets. 

Keywords: S0.9, S1, model-set semantics, tableaux, interpretation. 

1   Introduction 

In [3] it was shown that S1 and S0.9 are distinct modal systems. The proof was based 
on the use of  model-set / model-system [6] semantics. The semantics in possible 
worlds form were adopted by several authors [2,3] as the semantics for S1. The se-
mantics are rather strange It was shown by Cresswell [2] that they are actually the 
semantics for S1+, which includes but is not S1. Cresswell also showed, in standard 
possible worlds truth value semantics, that the semantics for S1 is a neighbourhood 
semantics. Segerberg and Chellas [1] have, more recently, explored the strictly formal 
relationships between the several systems close to S1, including S0.9. 

The purpose of this paper is to set out the model-set / model-systems semantics and 
their tableaux (truth trees) for systems in the vicinity S0.9 and S1, and to comment 
about one way these systems are often seen in relationship to each other. It is some-
times suggested that there is a natural flow from S0.5 to S0.9 to S2 to S3, a flow 
which leaves S1 and S1+ aside. We will comment later on this natural flow, and see 
how this either illuminates or obscures the scene. 

2   Systems and Tableaux 

In this paper we take it that tableaux are simply a diagrammatic way of  representing 
the working of model-set / model-system semantics. This is in accord with Hintikka’s 
use of model-set/model-system semantics to establish validity by means of reductio 
proofs. There are many other ways of taking tableau. They have been analysed in 
terms of graphs, and in terms of standard truth-value semantics. Not so here. 
                                                           
1 The semantics for S1 herein resulted from discussions with Graham Priest and Jerry Seligman 

in 2000. 



120 R.A. Girle 

Neighbourhood semantics have not readily converted to tableau systems. But, 
strange as the S1+ semantics are, they readily yield a tableau system. The model-set / 
model-system semantics were set out in [3]. 

We begin by setting out the Lemmon axiom systems for S0.5, S0.9, S1, S1+ and 
S2. It is also useful to set out K, even though we make only passing use of it. Tableau 
systems will then be set out for all six systems.  

We use the standard language of propositional modal logic with ~, &, ⊃, � and ◊.  
We define ↔ with: 

Def ↔  (A ↔ B) =df (�(A ⊃ B) & �(B ⊃ A)) 

The axiom schema for S0.5, S0.9, S1, S1+, S2 and K are drawn from: 

A1. (A ⊃ (B ⊃ A)) 
A2. ((A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))) 
A3. ((~A ⊃ ~B) ⊃ (B ⊃ A)) 
A4. (�A ⊃ A) 
A5. (�(A ⊃ B) ⊃ (�A ⊃ �B)) 
A6. (�(A ⊃ B) ⊃ (�(B ⊃ C) ⊃ �(A ⊃ C))) 
A7. �((�A & �B) ⊃ �(A & B)) 

We define the following axiom schema: 
�Ai (1 ≤ i ≤ 7) is the schema resulting from the prefixing of � before Axiom 

Schema Ai. 
The Rules of Inference are: 

R1. |– A, |– (A ⊃ B) ⇒ |– B  (Modus Ponens) 
R2. |– A ⇒ |– � A   (Necessitation) 
R3. |– � A ⇒ |– A   (De-necessitation) 
R4. |– (A ↔ B) ⇒ |– (� A ↔ � B) 
R5. |– (A ⊃ B) ⇒ |– (� A ⊃ � B) 

The set of Axiom Schema and Inference Rules for Propositional Logic (PL) is: 

PL = {A1, A2, A3, R1} 

We also have: 

S0.5 = {�A1, �A2, �A3, A4, A5, R1} 
S0.9 = {�A1, �A2, �A3, �A4, �A5, R1, R3, R4} 
S1 = {�A1, �A2, �A3, �A4, �A6, R1, R3, R4} 
S1+ = {�A1, �A2, �A3, �A4, �A6, A7, R1, R3, R4} 
S2 = {�A1, �A2, �A3, �A4, �A5, R1, R3, R5} 
K =  {A1, A2, A3, A5, R1, R2} 

We begin with S0.5 because the tableau system for S0.5 is the simplest system for 
non-normal logics, and will be a good stepping-off point for the tableau systems for 
the more complex logics. But before we set out the tableau systems we set out the 
model-set / model-system semantics for all four systems. 

An S-model-system, Ω, is a set of sets: n, m, l, k, j, i, r, ..., of formulas of S, which 
satisfies a set of consistency conditions. The members of any model-system are 



 The Neighbourhood of S0.9 and S1 121 

model-sets. The model-sets are the field of a binary relation, R, known as an alternate 
(or accessibility) relation. There is also a binary relation, N, between model sets and 
subsets of Ω, known as the neighbourhood relation. 

A model-set, μ, to which some model-set, say ν, has the relation R, (∃ν)νRμ, is an 
alternate model-set. A model-set, μ, to which no model-set has the relation R, 
~(∃ν)νRμ, is a non-alternate model-set.  

We define S-Validity (where S is one of the five above) in a “tableau friendly” 
way: 

S-Valid(A) iff there is no non-alternate model-set μ ∈ Ω such that ~ A ∈ μ ∈ Ω  

We begin with the consistency conditions for classical propositional logic (S = PL): 

(C. ∅)  No model-set contains both A and ~ A. 
(C.~ ~)  If ~ ~ A ∈ μ ∈ Ω then A ∈ μ. 
(C. &)  If (A & B) ∈ μ ∈ Ω then A ∈ μ and B ∈ μ. 
(C. ~ &)  If ~ (A & B) ∈ μ ∈ Ω then either ~ A ∈ μ or ~ B ∈ μ. 
(C. ⊃)  If (A ⊃ B) ∈ μ ∈ Ω then either ~ A ∈ μ or B ∈ μ. 
(C. ~ ⊃)  If ~ (A ⊃ B) ∈ μ ∈ Ω then A ∈ μ and ~ B ∈ μ. 

Let this set of consistency conditions be PLC: 

PLC = {(C. ∅), (C.~ ~), (C. &), (C. ~ &), (C. ⊃), (C. ~ ⊃)} 

These conditions translate directly into the following completely standard tableau 
rules for PL. They are in the style of [5], and in setting out the tableau rules we write: 

“A (μ)” for “A ∈ μ ” where μ ranges across model-sets in any model-system. 

Two standard rule names are also inserted. 

(Closure)    A   (μ)   (DN) ~ ~ A   (μ) 
      :         : 

  ~ A   (μ)        A   (μ) 
     ✕  

  (A & B)   (μ)   ~ (A & B)   (μ) 
      :            : 
      A   (μ) 
      B   (μ)  ~ A  (μ)  ~ B  (μ) 

 

  (A  ⊃ B)   (μ)    ~ (A  ⊃ B)   (μ) 
         :              : 
              A   (μ) 

 ~ A  (μ)    B  (μ)        ~ B   (μ) 



122 R.A. Girle 

Although it is not our aim to discuss the normal modal logics, it will assist in set-
ting out of the non-normal modal logics if we set out the model-set/model-system  
semantics for K, usually taken to be the minimal normal modal logic. 

The consistency conditions for K are PLC plus the following four conditions. The 
first two are for negated box and negated diamond. 

(C. ~ ◊)  If  ~ ◊A ∈ μ ∈ Ω then � ~ A ∈ μ. 

(C. ~ �) If  ~ � A ∈ μ ∈ Ω then  ◊ ~ A ∈ μ. 

These two conditions with the DN condition set out the standard interdefinability 
of box and diamond, and are common to all the modal logics we discuss. We let: 

MN = {(C. ~ ◊), (C. ~ �)} 

where “MN” is for “Modal Negation”. The conditions in MN are represented by the 
following tableau rules: 

(MN)  ~ ◊ A   (μ)  (MN)  ~ � A   (μ) 
        :         : 
  � ~ A   (μ)    ◊ ~ A   (μ) 

Now, for the K consistency conditions for positive box and diamond: 

(C. ◊) If  ◊A ∈ μ ∈ Ω then there is at least one model-set in Ω, say ν,  such that  
                 ν is an alternate to μ, μRν, and A ∈ ν. 
(C. �)      If � A ∈ μ ∈ Ω and ν is an alternate to μ, μRν, then A ∈ ν. 

These are the standard diamond and box consistency conditions for the normal 
modal logics. The set of consistency conditions for K is KC: 

KC = PLC ∪ MN  ∪ {(C. ◊), (C. �)} 

The conditions (C. ◊) and (C. �) are represented by the following tableau rules: 

(R.◊)  ◊ A (μ)   (R.�)  � A   (μ) 
     :      μRν 

  μRν         : 

    A (ν)   where ν is NEW to   A   (ν) 
           this path of the tree. 

There is a sense in which, in a tableau, (R.◊) is a model-set generation rule. For 
tableaux it will be useful to refer to “generated model-sets”, where ν is the generated 
model-set in the rule above. ν is generated by ◊ A in μ and ν is an alternate to μ. 

We now set out the model-system consistency conditions for S0.5. They are PLC 
plus the MN rules and the following three conditions. 



 The Neighbourhood of S0.9 and S1 123 

   (C.◊0.5) If  ◊A ∈ μ ∈ Ω and μ is not an alternate to any set in Ω, then there is at 
                      least one model-set in Ω, say ν,  such that ν is an alternate to μ, μRν, 
                      and A ∈ ν. 

(C. �0.5) If � A ∈ μ ∈ Ω and μ is not an alternate to any set in Ω and ν is an 
        alternate to μ, μRν, then A ∈ ν. 

These two conditions are similar to the K conditions. The differences between the 
consistency conditions for K and S0.5 are the qualifications that stipulate that the 
conditions for diamond and box apply only to non-alternate model-sets. There is an 
third condition which is similarly qualified: 

(C. T�)    If � A ∈ μ ∈ Ω and μ is not an alternate to any set in Ω,  then A ∈ μ. 

The set of consistency conditions for S0.5 is S0.5C: 

S0.5C = PLC ∪ MN  ∪ {(C. T�), (C. ◊), (C. �)} 

In the model-set semantics the alternate relation, R, has no explicit properties such 
as reflexivity or transitivity. So, equivalent logical outcomes of such properties on R 
such as reflexivity have to depend on conditions such as (C. T�). 

The S0.5 conditions give the PL and MN tableau rules plus the following tableau 
rules: 

(R0.5◊)   where μ is not an   (R0.5�)   where μ is not an 
       alternate to (not generated by)    alternate to (not generated by) 
       any model-set      any model-set 
       ◊ A   (μ)                � A   (μ) 
     :                 μRν 

  μRν      : 

    A   (ν) where ν is NEW to              A   (ν) 
   this path of the tree. 
 
(T�)  where μ is not an alternate to  
  (not generated by) any model-set 
   � A   (μ) 
      : 

     A   (μ) 
 

The distinction between normal and non-normal worlds in the standard possible 
worlds semantics is not mirrored in any exact way in the consistency conditions of 
model-set/model-system semantics. There is an apparently different distinction be-
tween two sets of model-sets in any model-system to that drawn in standard possible 
world semantics. In the model-set/model-system semantics there are the model-sets 
which are alternates to some model-set, and so generated by rules such as  R◊; and 
model-sets which are not alternate to any model-set and hence, not generated. The 
only non-generated model-set in a tableau is the root model-set, the one with which 
the tableau begins. In S0.5 the root model-set has tableau rules exactly the same as 



124 R.A. Girle 

those for all model-sets in model-system semantics for T ([5] Chapter 3). In generated 
model-sets in S0.5 the only rules which deal with formulas with either box or dia-
mond or their negations for the main operator are the MN rules. 

For S1+ there are consistency conditions additional to those for S0.5. They are ad-
ditional conditions for box and diamond which apply to generated or non-alternate 
model-sets. From this point we will use “alternate” for the longer “alternate to some 
model-set in Ω” The conditions are: 

(C. A ◊)   If  ◊A ∈ μ ∈ Ω and μ is an alternate, then either A ∈ μ or there is at least 
       one model-set in Ω, say ν,  such that ν is an alternate to μ, μRν, and ~ A ∈ ν. 
(C. A�)   If � A ∈ μ ∈ Ω and μ is an alternate and ν is an alternate to μ, μRν, 
                 then ~ A ∈ ν. 
(C. R�)  If � A ∈ μ ∈ Ω, then A ∈ μ. 

The set of consistency conditions for S1+ are S1+C: 

S1+C = S0.5C ∪ {(C. A ◊), (C. A�), (C. R�)} 

These rules are crucial to the validation of both A6 and A7. The tableau rules are 
extended with three new rules for alternate model-sets: 

(AR◊) σRμ for some σ  (AR�) σRμ for some σ 

  ◊ A (μ)    � A   (μ) 

      :      μRν 

    μRν         : 

       ~ A   (ν) 

 A   (μ)      ~ A   (ν)   where ν is NEW to 
    this path of the tree. 
 
(R�)  � A   (μ) 

     : 

     A   (μ) 

All tableau begin the test of the validity of A with ~ A  (n), with the annotation 
“NTF” for “Negated Test Formula.” We use  n, k, l, m, …as indices for model-sets. In 
the rules above, μ and ν  range over the model-set indices. 

Consider the tableau for the S1+ formula:  �((�A & �B) ⊃ �(A & B)) 

1. ~ �((�A & �B) ⊃ �(A & B))   (n)  NTF 
2. ◊ ~((�A & �B) ⊃ �(A & B))   (n) 
3.   nRk 
4. ~ ((�A & �B) ⊃ �(A & B))   (k) 
5.  (�A & �B)   (k) 
 



 The Neighbourhood of S0.9 and S1 125 

6.  ~ �(A & B)   (k) 
7.  ◊ ~ (A & B)   (k) 
8.   �A   (k) 
9.   �B   (k) 
10.   kRm [Everything is as expected to this point. 
     Then strange things begin to happen.] 
 

11. ~ (A & B)   (k)      ~ ~ (A & B)   (m)  3, 7, AR◊ 

12.  A   (k)  8, R�         (A & B)   (m)   11, DN 

13.  B   (k)  9, R�   ~ A   (m)  8, 10, AR� 

14       ~ B   (m)  9, 10, AR� 

15. ~ A   (k) ~ B   (k)  11, PL       A   (m) 12, PL 

16   ✕     ✕        B   (m) 12, PL 

          ✕  

We have S1+-Valid (�((�A & �B) ⊃ �(A & B))) 
Next we turn to S1 rather than S0.9, and return to S0.9 later. For S1 we add to the 

conditions for S0.5 a different set to those added for S1+. This requires the introduc-
tion of a neighbourhood function, N, which relates single model-sets to sets of model-
sets which contain certain formulas. We first define: 

|A|  =df {μ ∈ Ω : A ∈ μ } 

Segerberg and Chellas [1] point out that each | A| is the truth-set of A.  

Clearly |A| ⊆  Ω 

We add to S0.5 the following conditions for alternate model-sets: 

(C. S1◊)    If  ◊A ∈ μ ∈ Ω and μ is an alternate, then either A ∈ μ or not μN| ~A |. 

(C. S1�)   If  � A ∈ μ ∈ Ω and μ is an alternate, then A ∈ μ and μN| A |. 

(C. Ω1)      If μ ∈ Ω and  μN | A | and μN | B |, then there is some model-set in Ω, 
         say ν, such that ~ A ∈ ν and ~ B  ∈ ν 

The condition (C. Ω1) is equivalent to the possible worlds stipulation in [2] that: 

Prop 1:  For all μ ∈  Ω: if μN | A | and μN | B | then | A | ∪ | B | ≠ Ω 

Clearly, if the union of | A | and | B| is not the whole model-system Ω, as stipulated by 
the principle above, then there has to be at least one model-set, say ν, which is not 
gathered into either | A | or | B | by the N relation, that is, both ~ A and ~ B are in that 
model-set, ν.  

The set of consistency conditions for S1 are S1C: 

 S1C = S0.5C ∪ {(C. S1 ◊), (C. S1�), (C. Ω1)} 



126 R.A. Girle 

Tableau rules are: 

(S1R◊) σRμ for some σ (S1R�)    σRμ for some σ 

  ◊ A (μ)   � A   (μ) 

      :         : 

      μN | A| 

 A   (μ)   not μN | ~ A| 

 
(R�)   � A   (μ)   (S Ω1) μN | A | 

     :    μN | B | 

     A   (μ)        : 

      ~ A   (ν) 

      ~ B   (ν) 

      where ν is NEW to 
      this path of the tree. 

We also need rules with which to manipulate neighbourhoods. 

(NN)        μN | A |  (Closure) μN | A | 

  not μN | B |             not μN | A | 

            :          : 
           ✕  

   A   (ν)     B   (ν) 

 ~ B   (ν)   ~ A   (ν) 
  where ν is NEW to 
  these paths of the tree. 

We also need a set of tableau rules, (NPL), by means of which truth-set equiva-
lences can be dealt with: 

 μN | ~ ~ A |  μN | ~ (A ⊃ B) |          μN | (A ⊃ B) | 

      :        :        : 

 μN | A |   μN | A | 

    μN | ~ B | μN | ~ A | μN | B | 

The introduction of the neighbourhood relation, N, takes S1 into quite another 
realm. We look first at an S1 tableau for the S1 axiom: 

�((�(A ⊃ B) & �(B ⊃ C)) ⊃ �(A ⊃ C)) 

1.  ~ �((�(A ⊃ B) & �(B ⊃ C)) ⊃ �(A ⊃ C))   (n)  NTF 
2.  ◊~((�(A ⊃ B) & �(B ⊃ C)) ⊃ �(A ⊃ C))   (n) 



 The Neighbourhood of S0.9 and S1 127 

3.      nRk 

4.  ~((�(A ⊃ B) & �(B ⊃ C)) ⊃ �(A ⊃ C))   (k) 

5.   (� (A ⊃ B) & �(B ⊃ C))   (k) 

6.    ~�(A ⊃ C)   (k) 

7.    ◊~ (A ⊃ C)   (k) 

8.    �(A ⊃ B)   (k) 

9.    �(B ⊃ C)   (k) 

10.    (A ⊃ B)   (k)   8, R� 

11.    (B ⊃ C)   (k)   9, R� 
 

12.  ~  (A ⊃ C)   (k)      not kN | ~ ~ (A ⊃ C)| 7, S1R◊ 

13.       A   (k)      kN | (A ⊃ B) | 8, S1R�  

14.     ~ C   (k)      kN | (B ⊃ C) | 9, S1R� 
15.         ~ (A ⊃ B)   (j) 13, 14 SΩ1 

16.      ~ A   (k)  B   (k)     ~ (B ⊃ C)   (j) 13, 14 SΩ1 

17.  ✕      A   (j) 15, PL 

18.   ~ B   (k)  C   (k)  ~ B   (j) 15, PL 
19.        ✕       ✕      B   (j) 16, PL 

20.       ~ C   (j) 16, PL 

21.          ✕  18, 19 

We turn next to the Cresswell formula in [2] which shows that S1+ is not the same 
as S1: S1+ has none of the neighbourhood complications. Before we look at S0.9, we 
consider the use of the S1 tableau system to disprove the S1+ axiom. 

1.  ~�((�A & �B) ⊃ �(A & B)) (n)  NTF 
2.   ◊~ ((�A & �B) ⊃ �(A & B))  (n) 
3.     nRk 
4.   ~ ((�A & �B) ⊃ �(A & B))  (k) 
5.    (�A & �B) (k) 
6.    ~�(A & B) (k) 
7.    ◊~ (A & B) (k) 
8.     �A (k) 
9.     �B (k) 
10.     A  (k) 
11.     B  (k) 
 

12.      ~ (A & B) (k)   not kN | ~ ~ (A & B)| 3, 7, S1R◊ 

13.  ✕      12, 10, 11      kN | A | 8, S1R� 

14.         kN | B | 9, S1R� 

 



128 R.A. Girle 

15.         ~ A (j)     13, 14 SΩ1 
16.         ~ B (j)     13, 14 SΩ1 
 

17.   ~ ~ (A & B)   (m)  A   (m) 12, 13 NN 

18.   ~ A   (m)  ~ ~ ~ (A & B)   (m)12, 13 NN 

19.        (A & B)   (m)  ~ (A & B)   (m) 

20.   A   (m) 

21.   B   (m)     ~ A   (m)    ~ B   (m) 

22.   ✕        ✕  

23.        ~ ~ (A & B)   (i)     B   (i) 

24.     ~ B   (i)  ~ ~ ~ (A & B) (i) 

25.     (A & B)   (i)      ~ (A & B) (i) 

26.      A   (i) 
27.     B   (i)  ~ A   (i)    ~ B  (i) 

     ✕        ↑      ✕  

This open tableau delivers an S1 counter-example to the S1+-Valid formula. 
Let S be the set of model-sets in Ω which are not alternate. The counter-example is: 

Ω = {n, k, j, m, i}  S = {n} 
R = {〈n, k〉}  N = {〈k, {k, i}〉, 〈k, {k, m}〉 

This is almost the same as the counter-example in Cresswell ([4] pg. 35). 
Now for S0.9. In [3] the model-system semantics introduced a “relevance” condi-

tion for the S0.9 system. We propose that (C. Ω0.9) be a qualified (C. Ω1): 

(C. Ω0.9) If μ ∈ Ω and  μN | A | and μN | B |, and all the sub-formulas 
  of A are sub-formulas of B or conversely,  then there is some  
  model-set in Ω, say ν, such that ~ A ∈ ν and ~ B  ∈ ν 

We then have: 

S0.9C = S0.5C ∪ {(C. S1 ◊), (C. S1�), (C. Ω0.9)} 

The tableau rules for S0.9 are the same as for S1 except that (S Ω1) is replaced 
with (S Ω0.9) where AS(α) is the set of atomic sub-formulas formulas of α. 

(S Ω0.9)  μN | A | 
  μN | B | and either AS(A) ⊆ AS(B) or AS(B) ⊆ AS(A) 

      : 
  ~ A   (ν) 
  ~ B   (ν)  
   where ν is NEW to 
   this path of the tree. 

If this rule were to be applied in the tableau for the S1 axiom above, then the tab-
leau would not close, because lines 15 and 16 could not follow from lines 13 and 14.  



 The Neighbourhood of S0.9 and S1 129 

The relevant parts of the four lines are: 

13.      kN | (A ⊃ B) |  

14.      kN | (B ⊃ C) | 

15.      ~ (A ⊃ B)   (j) 13, 14 SΩ1 

16.      ~ (B ⊃ C)   (j) 13, 14 SΩ1 

There can be no application of the sub-formula rule, (S Ω0.9), to 13 and 14. 

Consider also an S0.9 tableau for �A5: �(�(A ⊃ B) ⊃ (�A ⊃ �B)) 

1.  ~ �(�(A ⊃ B) ⊃ (�A ⊃ �B))  (n) NTF 
2.  ◊ ~ (�(A ⊃ B) ⊃ (�A ⊃ �B))  (n) 
3.   nRk 

4.  ~ (�(A ⊃ B) ⊃ (�A ⊃ �B))  (k) 

5.        �(A ⊃ B)   (k) 

6.   ~  (�A ⊃ �B)   (k) 
7.    �A   (k) 
8.    ~ �B   (k) 

9.    ◊ ~ B   (k) 

10.    (A ⊃ B)   (k) 5, R� 
11.        A   (k) 7, R� 
 

12.  ~ B (k)   not kN | ~ ~B | 3, 9 S1R◊ 

13.    ✕    10, 11, 12, PL      kN | (A ⊃ B) | 3, 5 S1R� 

14.          kN | A | 3, 7 S1R� 

15.          kN | B | 13, 14 SΩ0.9 

16.      not kN | B | 12 NPL 

           ✕    15, 16 

It is obvious that the sub-formulas of A are sub-formulas of (A ⊃ B) for the applica-
tion of rule (SΩ0.9) at line 15 to lines 13 and 14. 

Finally we turn to the model-system conditions for S2. The following are added to 
the conditions for S0.5. The equivalent of the following are to be found in [6]. 

(C.S2◊)    If  ◊A ∈ μ ∈ Ω and μ is alternate, and if  □B ∈ μ, for any B, then there is 
        at least one model-set in Ω, say ν,  such that ν is an alternate to μ, μRν,  
        and A ∈ ν. 
(C. S2�)  If � A ∈ μ ∈ Ω and μ is alternate and ν is an alternate to μ, μRν,  
                  then A ∈ ν. 
(C. R�)   If � A ∈ μ ∈ Ω,  then A ∈ μ. 

The set of consistency conditions for S2 are S2C: 

S2C = S0.5C ∪ {(C. S2 ◊), (C. S2�), (C. R�)} 



130 R.A. Girle 

The tableau rules are: 

(S2R◊) σRμ for some σ  (S2R�) σRμ for some σ 

  � B   (μ)    � A   (μ) 

  ◊ A (μ)    μRν 

      :          : 

  μRν       A  (ν) 

  A   (ν) 
  where ν is NEW to 
  this path of the tree. 

(R�)   � A   (μ)  

     : 

     A   (μ) 

3   Completeness 

The proofs of completeness for these systems are generated simply by showing that 
the maximal consistent sets of formulas in the standard proofs are, in fact, model-sets 
with the requisite properties for the respective logics. For example, the completeness 
proof for S1 would be simply parasitic on Cresswell’s original proof in [2] and on [1]. 
Rather than repeat what has already been done we turn to the issue of the natural flow 
from S0.5 to S2. 

4   Natural Flow 

When one looks at both the axiomatics and semantics for the logics around S0.9 and 
S1, there is a sense in which the natural sequence of logics is S0.5, S0.9, S2, S3, S4 
and S5. The sequence can be labeled the Point Nine sequence. The same sequence 
without S0.9 can be labeled the Point Five sequence. Some might argue that an even 
more natural sequence is the  S0.5, S0.9, S2, T, S4 and S5 sequence. But our focus is 
on the sequence up to S2. 

From an axiomatic perspective, the change from S0.5 to S0.9 is made by the addi-
tion of  R3 and R4 and the necessitation of the two non-necessitated axioms of S0.5. 
The change from S0.9 to S2 only requires the strengthening of R4 to R5. In all of this, 
the basic underlying axioms remain the same. Both the Point Nine, Point Five and T 
sequences have this simple flow.  

S1 and S1+ are to one side in the sense that axiom A6 appears for both and then 
vanishes from the scene. It is not valid for S0.9, although it is for S2. 

From a semantic perspective, the flow is not so smooth. S0.9 is out of place  
because of the neighbourhood semantics. Neighbourhood semantics are not required 
for the rest of the Point Nine sequence. Otherwise, in the Point Five sequence, the 
shift up from S0.5 to S2, and then on through the S2 to S5 systems is simple and  



 The Neighbourhood of S0.9 and S1 131 

incremental without any neighbourhood semantics. This is not to deny that trivial 
neighbourhood semantics can be constructed. But their triviality reinforces the point 
about the flow. All of S0.9, S1 and S1+ are to one side of the intuitively natural se-
quence of semantics.  

An important issue that lurks behind all this concerns the interpretation of modal 
semantics. For example, it is easy to interpret S5 semantics as the semantics of logical 
possibility so that “◊ A” is read as “Given what must be true, it’s logically possible 
that A”. Hintikka [7] has shown that S4 can be interpreted by taking ◊ A to mean 
“Given what’s known, it’s possible that A” So there is an epistemic reading of S4 
from a semantic point of view. S4 and S5 are normal modal logics, so the same inter-
pretation can be given in all worlds. But what can be said of the semantics of S0.5? 
Lemmon [8] made his suggestion that S0.5 was best seen as an epistemic logic. In [4] 
S0.5 is described as a Cartesian epistemic logic on the basis of the axiomatics alone. 
But what is to be said about its semantics? In alternate worlds knowledge and igno-
rance mean nothing. Although “◊ � A” might be read as “Given what’s known, it’s 
possible that A is known,” “A is known,” in the context given, has no epistemic  
interpretation from a semantic point of view. This can be seen from a fragment of a 
tableau for S0.5 in which ◊ � A occurs in the root of the tableau:- 

    ◊ � A  (n) 
    nRk 
    � A  (k) 

Since k is an alternate world, there is no logic for the box in � A. It is as if � A is 
treated as an atomic formula. 

And that’s the focus of the difficulties with the interpretation of S1. How should 
the semantic structures of model-sets (or worlds), and in particular, the alternate 
model-sets or non-normal worlds, be interpreted? 

Tableaux are systems for building a partial model or counter-model. We can take 
the root of the tableau to be a (partial) description of the actual world and the gener-
ated sets or world’s descriptions to be the non-actual possibilities. The normal modal 
logics give us a univocal or unchanging account of possibility across all worlds. In the 
non-normal logics the generated modal structures are governed by conditions which 
make it clear that the notions of possibility and necessity, let alone knowledge and ig-
norance, are not the same in the generated worlds as they are in actual world. 

What kinds of differences might we expect in the alternate worlds? There is a spec-
trum of difference in one dimension with modality having no logical weight at all at 
one end through various qualifications to being the same as the actual world at the 
other end. But, what sorts of qualifications might there be?  

Modality in S0.5 generated worlds is at the no-logical-weight end of the spectrum. 
There is no modality apart from the interdefinability of box and diamond. And even 
that can be disposed of by having just diamond, or just box. In S2, modality operates 
only if there is both positive and negative modality. There are possibilities only if 
there are impossibilities (necessities). In S3, there is a situation similar to S2. So, for 
S0.5, S2 and S3 the tableau semantics indicate that we have what amounts to differ-
ences in the notion of possibility as we move further from the actual world and into 
worlds generated by possibility. 



132 R.A. Girle 

What can be said for S0.9, S1 and S1+? Let us begin with the central system, S1. 
The tableau for S1 indicate that there is, as with S0.5, S2 and S3, a difference in the 
notion of possibility in the generated worlds from the actual world. The difference is 
quite complex. Cresswell says that the semantics for S1 are “not particularly elegant” 
and that S1 is “a very silly system.” ([2] page 6) Is Cresswell’s assessment correct, in 
spirit if not literally?  

There are two elements at work in the non-normal systems. First is the valuation 
function.  Second is the division between alternate and non-alternate, parallel to the 
normal and non-normal worlds. If we think of the Point Five sequence, then we see 
that the valuation function remains the same across all model sets. If set generation is 
allowed, then ◊ A generates a set in which there is A. In terms of possible worlds, if 
◊A is true, the there is a world in which A is true. The big change in S1 comes with 
the original conditions (C.A◊) and (C.A�) from [3]. ◊A generates a set in which there 
is ~ A. In terms of possible worlds, if ◊A is true, the there is a world in which A is 
false, which led to the idea that box in alternate worlds changed its sense to the nega-
tive of box, to impossibility in alternate worlds. This is comprehensible even though 
this is a radical change.  But these are the conditions applicable to S1+ and not to S1.  
S1+ does not require neighbourhood semantics. There is a valuation function switch 
within standard non-normal semantics. The actual conditions for S1, (C.S1◊) and 
(C.S1�), are far more perplexing. But that is not all. 

In the case of S1, Prop 1 is an issue. It is very difficult to see what this might be 
taken to mean. It just looks like an opportunistic invention which will give complete-
ness and soundness. This might be very silly, but more like it shows what Sylvan [10] 
claimed – that any system could be provided with a formal semantics if we are inven-
tive enough. But having a relational semantics may well tell us about inventiveness 
but nothing useful about meaning. 

References 

[1] Chellas, Brian, F., Segerberg, Krister.: Modal Logics in the Vicinity of S1. Notre Dame. 
Journal of Formal Logic 37(1), 1–24 (1996) 

[2] Cresswell, Maxwell, J.: S1 is not so simple. In: Sinnott-Armstrong, W., Raffman, D., 
Asher, N. (eds.) Modality, Morality and Belief: Essays in Honour of Ruth Barcan Mar-
cus, Cambridge University Press, Cambridge pp. 29–40 

[3] Girle, Roderic, A.: S1 ≠ S0.9. Notre Dame. Journal of Formal Logic XVI (3), 339–344 
(1975) 

[4] Girle, Roderic, A.: Logical Fiction: Real vs. Ideal. In: Hing-Yan, L. (ed.) Pacific Rim In-
ternational Conference on Artificial Intelligence, Singapore, Nov 22-27 (1998) 

[5] Girle, Rod.: Modal Logics and Philosophy, Acumen, London (2000) 
[6] Hintikka, J.J.K.: Modality and Quantification. Theoria 27, 119–128 (1961) 
[7] Hintikka, J.J.K.: Knowledge and Belief. Cornell University Press, Ithaca (1962) 
[8] Lemmon, E.J.: Is there only one correct system of modal logic? Aristotelian Society Sup-

plementary XXXIII, 23–40 (1959) 
[9] Scotch, Peter, K.: Remarks on the semantics of non-normal logics. Topoi 3, 85–90 (1984) 

[10] Sylvan, Richard.: Relational Semantics for all Lewis, Lemmon and Feys modal Logics, 
and most notably for systems between S0.3° and S1. The Journal of Non.-classical 
Logic 6(99), 19–40 (1989) 



EXPTIME Tableaux with Global Caching for

Description Logics with Transitive Roles, Inverse
Roles and Role Hierarchies

Rajeev Goré1,� and Linh Anh Nguyen2

1 The Australian National University and NICTA
Canberra ACT 0200, Australia

Rajeev.Gore@anu.edu.au
2 Institute of Informatics, University of Warsaw

ul. Banacha 2, 02-097 Warsaw, Poland
nguyen@mimuw.edu.pl

Abstract. The description logic SHI extends the basic description logic
ALC with transitive roles, role hierarchies and inverse roles. The known
tableau-based decision procedure [9] for SHI exhibit (at least) NEXP-
TIME behaviour even though SHI is known to be EXPTIME-complete.
The automata-based algorithms for SHI often yield optimal worst-case
complexity results, but do not behave well in practice since good optimi-
sations for them have yet to be found. We extend our method for global
caching in ALC to SHI by adding analytic cut rules, thereby giving the
first EXPTIME tableau-based decision procedure for SHI, and showing
one way to incorporate global caching and inverse roles.

1 Introduction and Motivation

Description logics (DLs) are notational variants of multi-modal logics which
have proved to be important in representing and reasoning about knowledge.
We assume the reader is familiar with the notions of transitive roles, inverse
roles, role hierarchies and TBoxes (global assumptions) in DLs [1].

The decision problem for most of these logics (with global assumptions) is
EXPTIME-hard. The known decision procedures for these logics are tableau-
based, resolution-based or automata-based. In practice, the automata-based
methods do not behave as well as the other methods since good optimisations
for them have not been found to date. For very expressive description logics, the
most successful practical methods are all tableau-based.

Global assumptions or transitive roles can cause the traditional tableau meth-
ods for these logics to contain infinite branches because certain nodes repeat ad
infinitum. The usual solution is to remember certain nodes created along the
current branch using “histories” and to “block” all rules that would re-create an
� National ICT Australia is funded by the Australian Government’s Dept of Commu-

nications, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Centre of Excellence program.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 133–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



134 R. Goré and L.A. Nguyen

exact copy of any remembered nodes [1,7]. For inverse roles, blocked nodes can
become unblocked, and reblocked later, requiring “dynamic blocking” [9].

The basic description logic ALC extended with transitive roles, inverse roles,
and role hierarchies is called SHI. Horrocks and Sattler [9] gave a NEXPTIME
tableau decision procedure for SHI. In [1], Baader and Sattler wrote: “The point
in designing these algorithms [for SHI] was not to prove worst-case complexity
results, but · · · to obtain ‘practical’ algorithms · · · that are easy to implement
and optimise, and which behave well on realistic knowledge bases. Nevertheless,
the fact that ‘natural’ tableau algorithms for such EXPTIME-complete logics are
usually NEXPTIME-algorithms is an unpleasant phenomenon. · · · Attempts to
design EXPTIME-tableaux for such logics (De Giacomo et al., 1996; De Gia-
como and Massacci, 1996; Donini and Massacci, 1999) usually lead to rather
complicated (and thus not easy to implement) algorithms, which (to the best of
our knowledge) have not been implemented yet.” [1, page 26].

More precisely, the mentioned work of De Giacomo and Massacci [2] gives only
a NEXPTIME tableau decision procedure for propositional dynamic logic with
converse (CPDL) and an informally described transformation of NEXPTIME
tableaux into an EXPTIME decision procedure for CPDL using the “look behind
analytic cut”. Using analytic cuts to eliminate nondeterminism and reduce the
complexity from NEXPTIME to EXPTIME is a good idea. But it is not clear
how to eliminate the nondeterminism (of the NEXPTIME decision procedure
for CPDL [2]) using “look behind analytic cut”. Specifically, suppose we apply
an or-rule to a node w and obtain two successor nodes u and v, and after that
we follow the u-branch. If we later “look behind” and add a formula ϕ to w,
then ϕ affects node v. But how to eliminate the or-branching at w ?

Thus, to the best of our knowledge, no “natural and easy to implement” EX-
PTIME tableau decision procedures have been given or implemented for SHI.
Here, we give such a procedure using analytic cuts to “guess the future” so we
never look behind, in unison with our method of sound global caching forALC [6].

Caching is a crucial optimisation technique for obtaining efficient tableau-
based decision procedures for description logics [8,3]. Naive use of caching can
be unsound, so complex and difficult to implement methods have been devised
to regain EXPTIME decision procedures for the basic logic ALC [4]. But the
decision procedure given by Donini and Massacci [4] forALC permanently caches
“all and only unsatisfiable sets of concepts”, and temporarily caches visited nodes
on the current branch, even though this means that “many potentially satisfiable
sets of concepts are discarded when passing from a branch to another branch”.
Even more complicated methods have been suggested for handling inverse roles
and transitive roles, but these require severe restrictions to retain soundness [3].
Our global caching method is based on building a simple and-or graph using a
sound and complete traditional tableau calculus for ALC/SHI.

Our method for transforming our tableau calculus for SHI into an EXPTIME
decision procedure for SHI is almost the same as that for ALC in our previous
work [6]. The minor differences are some alterations for SHI and that some of
the tableau rules for SHI carry their principal concepts into their denominators



EXPTIME Tableaux with Global Caching for SHI 135

�I = ΔI ⊥I = ∅ (¬C)I = ΔI \ CI (r−)I = (rI)−1

(C � D)I = CI ∩ DI (C � D)I = CI ∪ DI

(C � D)I = (¬C � D)I (C
.
= D)I = ((C � D) � (D � C))I

(∀R.C)I = {a ∈ ΔI | ∀b.(a, b) ∈ RI implies b ∈ CI}
(∃R.C)I = {a ∈ ΔI | ∃b.(a, b) ∈ RI and b ∈ CI}

Fig. 1. Interpretation of Concepts and Roles

(which we need for combining the proofs of completeness of the calculus with
correctness of global caching). The overlap is needed to make this paper self-
contained. The major differences of this paper w.r.t. [6] lie in the use of the cut
rules, and the non-trivial complications necessary to ensure that the resulting
calculus and the algorithm resulting from it are complete.

In Section 2, we recall the notation and semantics of SHI. In Section 3, we
present our tableau calculus for SHI and prove its soundness, and in Section 4,
we prove its completeness. In Section 5, we present a simple EXPTIME decision
procedure for SHI that is based on the calculus and uses global caching and
propagation. In Section 6, we outline further work and conclusions.

2 Notation and Semantics of SHI

Given a finite set RNames of role names, let RNames− = {r− | r ∈ RNames}
be the set of inverse roles. A SHI role is any member of RNames ∪ RNames−.
We use uppercase letters like R and S for SHI roles. For any SHI role R the
inverse role R− = r− if R = r and R− = r if R = r−.

We use A for an atomic concept and use C and D for arbitrary concepts.
Concepts in SHI are formed using the following BNF grammar:

C,D ::= � | ⊥ | A | ¬C | C �D | C �D | C  D | C .= D | ∀R.C | ∃R.C

An interpretation I = 〈ΔI , ·I〉 consists of a non-empty set ΔI , the domain of
I, and a function ·I , the interpretation function of I, that maps every atomic
concept to a subset of ΔI and every role name to a subset of ΔI × ΔI . The
interpretation function is extended to interpret all SHI concepts and roles as
shown in Figure 1. An interpretation I satisfies a concept C if CI �= ∅, and
validates C if CI = ΔI . Clearly, I validates C iff it does not satisfy ¬C.

A TBox (of global axioms/assumptions) T is a finite set of concepts. (Tra-
ditionally, C  D and C .= D are not treated as concept constructors, and a
TBox is defined to be a finite set of terminological axioms of the form C  D
or C .= D, where C and D are concepts, but the two definitions are equivalent.)
An interpretation I is a model of T if I validates all concepts in T .

A SHI RBox R is a finite set of role inclusion axioms R  S and transitivity
axioms R ◦R  R for SHI roles R and S satisfying:



136 R. Goré and L.A. Nguyen

RBox 1: R  R ∈ R for every SHI-role R,
RBox 2: R  S ∈ R implies R−  S− ∈ R,
RBox 3: R ◦R  R ∈ R implies R− ◦R−  R− ∈ R,
RBox 4: R  R′ ∈ R and R′  R′′ ∈ R imply R  R′′ ∈ R, and
RBox 5: R  S ∈ R and S  R ∈ R imply R = S.

An interpretation I is a model of R if I validates all axioms in T : that is,
RI ⊆ SI if R  S ∈ R, and RI ◦RI ⊆ RI if R ◦R  R ∈ R.

We useX , Y for finite sets of concepts. We say that I satisfies X if there exists
d ∈ ΔI such that d ∈ CI for all C ∈ X . Note: by our definition, satisfaction is
defined “locally”, and I satisfies X does not mean that I is a model of X .

We say that (R, T ) entails C, and write (R, T ) |= C, if every model of R and
T validates C. We say that C is satisfiable w.r.t. (R, T ) if some model of R and
T satisfies {C}. Similarly, X is satisfiable w.r.t. (R, T ) if some model of R and T
satisfies X . Observe that (R, T ) |= C iff ¬C is unsatisfiable w.r.t. (R, T ).

For “tableaux” defined in the next section we use also the concept constructor
∀†R.C, where C is a concept without ∀†. A concept ∀†R.C has the same seman-
tics as ∀R.C (i.e. (∀†R.C)I = (∀R.C)I) but its use in tableaux is more restricted
due to S̃f( ) defined as follows. If C is not of the form ∀†R.D then let S̃f(C)
be the set of all sub-concepts of C and sub-concepts of C including themselves,
else let S̃f(C) = S̃f(D). Let S̃f(X) =

⋃
C∈X S̃f(C) ∪ {⊥} and let S̃fR(X) be

the set S̃f(X) ∪ {∀S.C, ∃S.C | (∀R.C) ∈ S̃f(X) and S  R ∈ R for some R}.
Note: We now assume that concepts are in negation normal form, where .=
and  are translated away and ¬ occurs only directly before atomic concepts,
treating ∀† as ∀. In SHI, every concept C has a logically equivalent concept
C′ which is in negation normal form. We write C for the negation normal form
of ¬C: thus, ∀†R.D = ∀R.D = ∃R.D and ∃R.D = ∀R.D.

3 A Tableau Calculus for SHI

We consider tableaux w.r.t. (R, T ), where R is a SHI RBox and T is a TBox.
A tableau rule w.r.t. (R, T ) consists of a numerator X and a (finite) list of
denominators Y1, Y2, . . . , Yk, all of which are finite sets of concepts. Such a rule
(ρ) is written in the form

(ρ)
X

Y1 | . . . | Yk

As we shall see later, each rule is read downwards as “if the numerator X
is satisfiable w.r.t. (R, T ), then there exists a denominator Yi which is also
satisfiable w.r.t. (R, T )”. The numerator of each tableau rule contains one or
more distinguished concepts called the principal concepts.

We write X ;Y for X ∪ Y , and X ;C for X ∪ {C}.
The tableau calculus CSHI for SHI is shown in Figure 2. The rules (�), (�),

(H), (H†), (cut∀), (cutB), and (cut5) are static rules, while (∃R) is a transitional
rule. Note that we include the principal concept of the static rules in their
denominators. Thus, the numerator of any static rule is a subset of every one of



EXPTIME Tableaux with Global Caching for SHI 137

(⊥)
X ; C ; C

⊥ (�)
X ; C � D

X ; C � D ; C ; D
(�)

X ; C � D

X ; C � D ; C | X ; C � D ; D

(H)
X ; ∀R.C

X ; ∀R.C ; ∀S.C
if S � R ∈ R (H†)

X ; ∀†R.C

X ; ∀†R.C ; ∀†S.C
if S � R ∈ R

(cut∀)
X

X ; ∀R.C | X ; ∃R.C
if ∀R.C ∈ �SfR(X ∪ T )

(cutB)
X

X ; C | X ; C ; ∀†R−.∃R.C
if ∀R.C ∈ �SfR(X ∪ T )

(cut5)
X

X ; ∀R.C | X ; ∃R.C ; ∀†R−.∃R.C
if ∀R.C ∈ �SfR(X ∪ T )
and R ◦ R � R ∈ R

(∃R)
X ; ∃R.C

transR(X, R) ; C ; T where

transR(X, R) = {D | ((∀S.D ∈ X) ∨ (∀†S.D ∈ X)) ∧ (R � S ∈ R)}
∪ {∀S.D ∈ X | (R � S ∈ R) ∧ (S ◦ S � S ∈ R)}
∪ {∀†S.D ∈ X | (R � S ∈ R) ∧ (S ◦ S � S ∈ R)}

Fig. 2. Tableau Rules w.r.t. (R, T ) for Calculus CSHI

its denominators. The subscripts in (cutB) and (cut5) are names of the modal
axioms (B) : ϕ→ ��ϕ and (5) : �ϕ→ ��ϕ, from which they are derived.

A set X is closed w.r.t. a tableau rule if applying that rule to X gives back
X as one of the denominators. We implicitly assume that a static rule is applied
to X only when X is not closed w.r.t. that rule and treat this as an (additional)
condition for applying the rule. Consequently, the rules (H) and (H†) require
that S �= R and the static rules with two denominators are applicable only if
both denominators are different from their numerator.

A CSHI-tableau (tableau, for short) for X w.r.t. (R, T ) is a tree with root
(X ; T ) whose nodes carry finite sets of concepts obtained from their parent nodes
by instantiating a CSHI-tableau rule w.r.t. (R, T ) with the proviso that: if a
child s carries a set Y and no rule is applicable to Y or Y has already appeared
on the branch from the root to s then s is an end node.

Remark 1. Note that the rules guarantee that T is contained in every world of
the model under construction to ensure that T is globally satisfied as required,
and to allow a simpler presentation of the rules.

A branch in a tableau is closed if its end node carries only ⊥. A tableau is closed
if every one of its branches is closed. A tableau is open if it is not closed.

A finite set X of concepts is consistent w.r.t. (R, T ) if every tableau for X
w.r.t. (R, T ) is open. If some tableau for X w.r.t. (R, T ) is closed then X is
inconsistent w.r.t. (R, T ).



138 R. Goré and L.A. Nguyen

Calculus CSHI is sound if for every SHI RBox R, every TBox T , and every
finite set X of concepts, X is satisfiable w.r.t. (R, T ) implies X is consistent
w.r.t. (R, T ). It is complete if for every SHI RBox R, every TBox T , and every
finite set X of concepts, X is consistent w.r.t. (R, T ) implies X is satisfiable
w.r.t. (R, T ).

Example 1. Let R be the smallest RBox satisfying the conditions adopted for
RBoxes and containing S ◦ S  S and S  R. We give below a closed CSHI
tableau for C � ∃S.∃S.∀R−.C w.r.t. (R, ∅), in which a superscript ∗ marks the
principal concept of a rule application except the cut rules. As shown later,
CSHI is sound, hence every model of R validates C  ∀S.∀S.∃R−.C.

C �∗ ∃S.∃S.∀R−.C

C; ∃S.∃S.∀R−.C

C; ∃S.∃S.∀R−.C;C
⊥

C; ∃S.∃S.∀R−.C; C; ∀†∗R.∃R−.C

C; ∃∗S.∃S.∀R−.C; C; ∀†R.∃R−.C; ∀†S.∃R−.C

∃∗S.∀R−.C; ∃R−.C; ∀†S.∃R−.C

∀R−.C; ∃R−.C; ∀†S.∃R−.C
⊥

A tableau rule w.r.t. (R, T ) is sound if it has the property that if the numerator
is satisfiable w.r.t. (R, T ) then so is one of the denominators.

Lemma 1. The calculus CSHI is sound.

Proof. The calculus CSHI is sound because all rules of CSHI are sound.

Let the closure Cl(R, T , X) be the set

{D, ∀†R.D | D ∈ S̃fR(X ∪ T ) and R is a SHI-role appearing in (R, T , X)}.

Let n be the size of (R, T , X), i.e. the sum of the lengths of the concepts of
X ∪ T and the lengths of the assertions of R. Then the size of S̃fR(X ∪ T ) is
O(n2) and the size of Cl(R, T , X) is O(n3). Note that if a concept C appears
in a tableau for X w.r.t. (R, T ) then C ∈ Cl(R, T , X): calculus CSHI thus has
the analytic superformula property [5].

4 Completeness

4.1 Proving Completeness Via Model Graphs

We prove completeness of our calculus via model graphs following [11,5,10]. A
model graph is a tuple 〈Δ, τ, C, E〉, where: Δ is a finite set; τ is a distinguished
element of Δ; C is a function that maps each element of Δ to a set of concepts;
and E is a function that maps each role name to a binary relation on Δ. A model
graph 〈Δ, τ, C, E〉 is saturated if every x ∈ Δ satisfies:

1. if C �D ∈ C(x) then {C,D} ⊆ C(x),
2. if C �D ∈ C(x) then C ∈ C(x) or D ∈ C(x),



EXPTIME Tableaux with Global Caching for SHI 139

3. if (∀R.C ∈ C(x) or ∀†R.C ∈ C(x)) and E(R)(x, y) holds then C ∈ C(y),
4. if ∃R.C ∈ C(x) then there exists y ∈ Δ with E(R)(x, y) and C ∈ C(y).

A saturated model graph 〈Δ, τ, C, E〉 is consistent if no x ∈ Δ has a C(x)
containing ⊥ or containing a pair C, C for some concept C. Given a model graph
M = 〈Δ, τ, C, E〉, the interpretation corresponding to M is the interpretation
I = 〈Δ, ·I〉 where AI = {x ∈ Δ | A ∈ C(x)} for every atomic concept A and
RI = E(R) for every role name R.

Lemma 2. If I is the interpretation corresponding to a consistent saturated
model graph 〈Δ, τ, C, E〉, then for every x ∈ Δ and C ∈ C(x) we have x ∈ CI .

Proof. By induction on the structure of C.

Given a SHI RBox R, a TBox T , and a finite set X of concepts consistent
w.r.t. (R, T ), we construct a model of R and T that satisfies X by construct-
ing a consistent saturated model graph 〈Δ, τ, C, E〉 such that the corresponding
interpretation is a model of R, X ⊆ C(τ), and T ⊆ C(x) for every x ∈ Δ.

4.2 Saturation

For a finite set X ⊇ T of concepts that is consistent w.r.t. (R, T ), a set Y of
concepts is called a saturation of X w.r.t. (R, T ) if Y is a maximal set consistent
w.r.t. (R, T ) that is obtainable from X (as a leaf node) by applications of the
static rules.

Lemma 3. Let X be a finite set of concepts consistent w.r.t. (R, T ), and Y
a saturation of X w.r.t. (R, T ). Then X ⊆ Y ⊆ Cl(R, T , X) and Y is closed
w.r.t. the static rules. Furthermore, there is an effective procedure that constructs
such a set Y from X and (R, T ).

Proof. It is clear that X ⊆ Y ⊆ Cl(R, T , X). Observe that if a static rule is
applicable to Y , then one of the corresponding instances of the denominators is
consistent w.r.t. (R, T ). Since Y is a saturation of X w.r.t. (R, T ), it is closed
w.r.t. the static rules.

We construct a saturation of X w.r.t. (R, T ) as follows: let Y := X ; while a
static rule is applicable to Y and has a corresponding denominator instance Z
which is consistent w.r.t. (R, T ) and strictly contains Y , set Y := Z. At each
iteration, Y ⊂ Z ⊆ Cl(R, T , X), so this process always terminates. Clearly, the
resulting set Y is a saturation of X w.r.t. (R, T ).

4.3 Constructing Model Graphs

Figure 3 contains an algorithm for constructing a model graph. Algorithm 1
assumes that X is consistent w.r.t. (R, T ) and constructs a model of R and
T that satisfies X . Algorithm 1 always terminates because each x ∈ Δ has a
unique finite set C(x), which is a subset of the finite set Cl(R, T , X), so eventually
Step 2(a)ii always finds a proxy.



140 R. Goré and L.A. Nguyen

Algorithm 1
Input: a SHI RBox R, a TBox T , and a finite set X of concepts,

where X is consistent w.r.t. (R, T ).
Output: a model graph M = 〈Δ, τ, C, E〉.

1. For an arbitrary node name τ , let Δ := {τ}, and E ′(R) := ∅ for every role name R.
Let C(τ ) be a saturation of X ∪ T w.r.t. (R, T ) and mark τ as unexpanded.

2. While Δ contains unexpanded elements, take one, say x, and do:
(a) For every concept ∃R.C ∈ C(x):

i. Let Y = transR(C(x),R) ∪ {C} ∪ T be the result of applying rule (∃R)
to C(x), and let Z be a saturation of Y w.r.t. (R, T ).

ii. If there is a (proxy) y ∈ Δ with C(y) = Z then add pair (x, y) to E ′(R);
iii. Else add a new element y with C(y) := Z to Δ, mark y as unexpanded,

and add the pair (x, y) to E ′(R).
(b) Mark x as expanded.

3. Let E be the least extension of E ′ that satisfies the conditions E(R−) = (E(R))−1

for every role name R and the assertions of R.

Fig. 3. Constructing a Model Graph (Using Limited Caching)

Lemma 4. Let R be a SHI RBox, T a TBox, and X a finite set of concepts
consistent w.r.t. (R, T ). Let M = 〈Δ, τ, C, E〉 be the model graph constructed
by Algorithm 1 for (R, T , X), and I be the interpretation corresponding to M .
Then I is a model of R and T that satisfies X.

Proof. We first show thatM is a consistent saturated model graph. It is sufficient
to show that for every x, y ∈ Δ, if (∀R.C ∈ C(x) or ∀†R.C ∈ C(x)) and E(R)(x, y)
holds then C ∈ C(y). We prove the following stronger assertion:

For all x, y∈Δ and all SHI-roles R and S: if ∀R.C∈C(x) (resp. ∀†R.C∈
C(x)) and E(S)(x, y) and S  R ∈ R then (i) C ∈ C(y), and (ii) ∀R.C ∈
C(y) (resp. ∀†R.C ∈ C(y)) if R ◦R  R ∈ R.

We prove this assertion by induction on the number of steps needed to de-
rive E(S)(x, y) during Step 3 of Algorithm 1. Suppose that ∀R.C ∈ C(x) (resp.
∀†R.C ∈ C(x)), S  R ∈ R, and E(S)(x, y) holds. There are the following cases
to consider:

1. The assertion trivially holds for the base case when E ′(S)(x, y) holds. Thus
we created y as an S-successor for x in order to fulfil some eventuality ∃S.D ∈
C(x). But when constructing y, the rule (∃R) puts C ∈ C(y) since S  R
and ∀R.C ∈ C(x) (resp. ∀†R.C ∈ C(x)). Similarly, it puts ∀R.C ∈ C(y) (resp.
∀†R.C ∈ C(y)) if R ◦R  R ∈ R.

2. Case E(S)(x, y) is derived from E(S′)(x, y) and S′  S ∈ R. Since S  R ∈
R by assumption, we have that S′  R ∈ R by RBox 4. The derivation
of E(S′)(x, y) is shorter by one step, so it falls under the induction hypoth-
esis (by putting S′ for S in the statement of the assertion). The desired
conclusions follow immediately.



EXPTIME Tableaux with Global Caching for SHI 141

3. Case E(S)(x, y) is derived from E(S)(x, z), E(S)(z, y), and S ◦ S  S ∈ R.
Assume that ∀R.C ∈ C(x) (the case ∀†R.C ∈ C(x) is similar). Since S  R
and ∀R.C ∈ C(x), the rule (H) would have put ∀S.C ∈ C(x). Applying the
inductive hypothesis to E(S)(x, z) (and putting S for R in the statement of
the assertion), we obtain that ∀S.C ∈ C(z) since S ◦ S  S ∈ R. Applying
the inductive hypothesis to E(S)(z, y) (and putting S for R in the statement
of the assertion), we obtain that C ∈ C(y). If R ◦ R  R ∈ R then, by the
inductive assumption, ∀R.C ∈ C(z), and ∀R.C ∈ C(y).

4. Case E(S)(x, y) is derived from E(S−)(y, x). There are two subcases:
(a) Case ∀R.C ∈ C(x). By the (H) rule, ∀S.C ∈ C(x). If C /∈ C(y) then, by

the (cutB) rule, C ∈ C(y) and ∀†S−.∃S.C ∈ C(y). Applying the inductive
assumption to E(S−)(y, x) (and putting S− for both S and R in the
statement of the assertion) gives us that ∃S.C ∈ C(x). But {∃S.C, ∀S.C}
is an inconsistent subset of C(x), contradicting the consistency of C(x),
hence C ∈ C(y). If R ◦ R  R ∈ R and ∀R.C /∈ C(y) then, by the
(cut5) rule, ∃R.C ∈ C(y) and ∀†R−.∃R.C ∈ C(y), and by the inductive
assumption, together with E(S−)(y, x) and S−  R− ∈ R it implies that
∃R.C ∈ C(x), which contradicts ∀R.C ∈ C(x).

(b) Case ∀†R.C ∈ C(x). There are two subcases since we can create such a
∀†R-concept using only the rules (cutB) and (cut5):
(cutB): Then C = ∃R−.D with D ∈ C(x), and ∀R−.D ∈ S̃fR(X ∪ T ).

Suppose that C /∈ C(y), i.e. ∃R−.D /∈ C(y). Then, by the rule (cut∀),
∀R−.D ∈ C(y). By RBox 2, we have S−  R− ∈ R from S  R ∈
R. Since ∀R−.D ∈ C(y) and S−  R− ∈ R and E(S−)(y, x), by
the inductive assumption, D ∈ C(x), which contradicts D ∈ C(x).
Therefore C ∈ C(y).

Suppose that R◦R  R ∈ R and ∀†R.C /∈ C(y), i.e. ∀†R.∃R−.D /∈
C(y). By RBox 3, we have R− ◦ R−  R− ∈ R too. Then, by the
(cut5) rule, ∀R−.D ∈ C(y). Analogously as for the previous para-
graph, it follows that D ∈ C(x), which contradicts D ∈ C(x). There-
fore, R ◦R  R ∈ R implies ∀†R.C ∈ C(y).

(cut5): Then C = ∃R−.D with ∃R−.D ∈ C(x), ∀R−.D ∈ S̃fR(X ∪ T )
and R− ◦R−  R− ∈ R.

Suppose C /∈ C(y), i.e. ∃R−.D /∈ C(y). Then ∀R−.D ∈ C(y) by
the rule (cut∀). By the inductive hypothesis, it follows that ∀R−.D ∈
C(x), which contradicts ∃R−.D ∈ C(x). Therefore C ∈ C(y).

Suppose ∀†R.C /∈ C(y), i.e. ∀†R.∃R−.D /∈ C(y). Then ∀R−.D ∈
C(y) by the (cut5) rule. By the inductive assumption, it follows that
∀R−.D ∈ C(x), which contradicts ∃R−.D ∈ C(x). Therefore ∀†R.C ∈
C(y).

By the construction ofM , the corresponding interpretation I is a model of R,
and we have that X ⊆ C(τ) and T ⊆ C(x) for every x ∈ Δ. Hence, by Lemma 2,
I is a model of R and T that satisfies X .

The following theorem immediately follows from Lemmas 1 and 4.

Theorem 1. The calculus CSHI is sound and complete.



142 R. Goré and L.A. Nguyen

5 A Simple EXPTIME Decision Procedure for SHI

The naive decision procedure for SHI that explores tableaux in the usual way
has co-2NEXPTIME complexity because each branch in a tableau may have an
exponential length, meaning that the whole tableau (tree) may have a double-
exponential number of nodes. Algorithm 1 has the same complexity because of
the computation of saturations (using naive tableaux).

By simulating the creation of saturations and checking whether the resulting
model graph is consistent, it is easy to alter Algorithm 1 so that it explicitly
checks, rather than assumes, that X is consistent w.r.t. (R, T ). Simulating the
creation of (a candidate for) a saturation is done nondeterministically in linear
time. Since Cl(R, T , X) has size O(n3), the constructed model graph has size
2O(n3). So the resulting algorithm for checking whether X is consistent w.r.t.
(R, T ), where R is a SHI RBox and T is a TBox T , runs in NEXPTIME.

In Figure 4 we present an EXPTIME decision procedure for SHI which
directly uses the tableau rules of CSHI to create an and-or graph as follows.

A node in the constructed and-or graph is a record with three attributes:

content: the set of concepts carried by the node
status: {unexpanded, expanded, sat, unsat}
kind: {and-node, or-node}

To check whether a given finite set X is satisfiable w.r.t. (R, T ), where R is
a SHI RBox and T is a TBox, the content of the initial node τ with status
unexpanded is X ∪T . The main while-loop continues processing nodes until the
status of τ is determined to be in {sat, unsat}, or until every node is expanded,
whichever happens first.

Inside the main loop, Steps (2b) to (2f) try to apply one and only one of the
tableau rules in the order (⊥), (�), (H), (H†), (�), (cut∀), (cutB), (cut5), (∃R) to
the current node v. The setD contains the contents of the resulting denominators
of v. If the applied tableau rule is (�) or (H) or (H†) then v has one denominator
in D; if the applied rule is (�) or (cut∀) or (cutB) or (cut5) then v has two
denominators in D; otherwise, each concept ∃R.C ∈ v.content contributes one
appropriate denominator to D. At Step (2g), for every denominator in D, we
create the required successor in the graph G only if it does not yet exist in the
graph: this step merely mimics Algorithm 1 and therefore uses global caching.

In Algorithm 2, a node that contains both C and C for some concept C
becomes an end-node with status unsat (i.e. unsatisfiable w.r.t. (R, T )). A node
to which no tableau rule is applicable becomes an end-node with status sat (i.e.
satisfiable w.r.t. (R, T )).

On the other hand, an application of (�) or (cut∀) or (cutB) or (cut5) to a
node v causes v to be an or-node, while an application of (�) or (H) or (H†) or
(∃R) to a node v causes v to be an and-node. Steps (2h) and (2i) try to compute
the status of such a non-end-node v using the kind (or-node/and-node) of v and
the status of the successors of v, treating unsat as irrevocably false and sat
as irrevocably true.



EXPTIME Tableaux with Global Caching for SHI 143

Algorithm 2
Input: a SHI RBox R, a TBox T , and a finite set X of concepts
Output: an and-or graph G = 〈V, E〉 with τ ∈ V as the initial node such that

τ.status = sat iff X is satisfiable w.r.t. (R, T )

1. create a new node τ with τ.content := X ∪ T and τ.status := unexpanded;
let V := {τ} and E := ∅;

2. while τ.status /∈ {sat, unsat} and we can choose an unexpanded node v ∈ V do:
(a) D := ∅;
(b) if no CSHI-tableau rule is applicable to v.content then v.status := sat
(c) else if (⊥) is applicable to v.content then v.status := unsat
(d) else if (�) or (H) or (H†) is applicable to v.content giving denominator Y then

v.kind := and-node, D := {Y }
(e) else if (�) or (cut∀) or (cutB) or (cut5) is applicable to v.content giving de-

nominators Y1 and Y2 (both different from v.content) then
v.kind := or-node, D := {Y1, Y2}

(f) else
i. v.kind := and-node,
ii. for every ∃R.C ∈ v.content, apply (∃R) to v.content giving denominator

transR(v.content, R) ∪ {C} ∪ T and add this denominator to D;
(g) for every denominator Y ∈ D do

i. if some (proxy) w ∈ V has w.content = Y then add edge (v, w) to E
ii. else let w be a new node, set w.content := Y , w.status := unexpanded,

add w to V , and add edge (v,w) to E;
(h) if (v.kind = or-node and one of the successors of v has status sat)

or (v.kind = and-node and all the successors of v have status sat) then
v.status := sat, propagate(G,v)

(i) else if (v.kind = and-node and one of the successors of v has status unsat)
or (v.kind = or-node and all the successors of v have status unsat) then

v.status := unsat, propagate(G,v)
(j) else v.status := expanded;

3. if τ.status /∈ {sat, unsat} then
for every node v ∈ V with v.status �= unsat, set v.status := sat;

Fig. 4. A Simple EXPTIME Decision Procedure for SHI

If these steps cannot determine the status of v as sat or unsat, then its status
is set to expanded. But if these steps do determine the status of a node v to be
sat or unsat, this information is itself propagated to the predecessors of v in
the and-or graph G via the routine propagate(G, v), explained shortly.

The main loop ends when the status of the initial node τ becomes sat or
unsat or all nodes of the graph have been expanded. In the latter case, all nodes
with status �= unsat are given status sat (effectively giving the status open to
tableau branches which loop).

The procedure propagate used in the above algorithm is specified in Figure 5.
As parameters, it accepts an and-or graph G and a node v with (irrevocable)



144 R. Goré and L.A. Nguyen

Procedure propagate(G,v)
Parameters: an and-or graph G = 〈V, E〉 and v ∈ V with v.status ∈ {sat, unsat}
Returns: a modified and-or graph G = 〈V, E〉

1. queue := {v};
2. while queue is not empty do
3. (a) extract x from queue;

(b) for every u ∈ V with (u, x) ∈ E and u.status = expanded do

i. if (u.kind = or-node and one of the successors of u has status sat)
or (u.kind = and-node and all the successors of u have status sat) then

u.status := sat, queue := queue ∪ {u}
ii. else if (u.kind = and-node and one of the successors of u has status unsat)

or (u.kind = or-node and all the successors of u have status unsat) then
u.status := unsat, queue := queue ∪ {u};

Fig. 5. Propagating Satisfiability and Unsatisfiability Through an And-Or Graph

status sat or unsat. The purpose is to propagate the status of v through the
and-or graph and alter G to reflect the new information.

Initially, the queue of nodes to be processed contains only v. While the queue is
not empty: a node x is extracted; the status of x is propagated to each predecessor
u of x in an appropriate way; and if the status of u becomes (irrevocably) sat
or unsat then u is inserted into the queue for further propagation.

This construction thus uses both caching and propagation techniques.

Proposition 1. Algorithm 2 runs in EXPTIME.

Proof. Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for (R, T , X)
and n be the size of the input, i.e. the sum of the lengths of the concepts of
X ∪ T and the lengths of the assertions of R.

For every v ∈ V , we have that v.content ⊆ Cl(R, T , X), hence the size of
v.content is O(n3). For every v, v′ ∈ V , if v �= v′ then v.content �= v′.content.
Hence V contains 2O(n3) nodes. Every v ∈ V is expanded (by Steps (2a)–(2j))
only once and such a task takes 2O(n3) time units without counting the execu-
tion time of the procedure propagate. When v.status becomes sat or unsat,
the procedure propagate executes 2O(n3) basic steps directly involved with v.
Hence the total time of the executions of propagate is of rank 2O(n3). The time
complexity of Algorithm 2 is therefore of rank 2O(n3).

Lemma 5. It is an invariant of Algorithm 2 that for every v ∈ V :

1. if v.status = unsat then
– v.content contains both C and C for some concept C,
– or v.kind = and-node and there exists (v, w) ∈ E such that w �= v and
w.status = unsat,

– or v.kind = or-node and for every (v, w) ∈ E, w.status = unsat;



EXPTIME Tableaux with Global Caching for SHI 145

2. if v.status = sat then
– no CSHI-tableau rule is applicable to v.content,
– or v.kind = or-node and there exists (v, w) ∈ E with w.status = sat,
– or v.kind = and-node and for every (v, w) ∈ E, w.status = sat.

(Since a static rule is applied to X only when X is not closed w.r.t. the rule, if
v.kind = or-node and (v, w) ∈ E then w �= v since w.content �= v.content.)

Proof. Lemma 5(1) clearly holds since these are the only three ways for a node
to get status unsat. For Lemma 5(2) there is the possibility that the node gets
status sat via Step 3 of Algorithm 2.

For a contradiction, assume that v.status becomes sat because of Step 3 of
Algorithm 2 and that all three clauses of the “then” part of Lemma 5(2) fail:

1. First, the rule assumed to be applicable to v.content cannot be the (⊥)-rule
as this would have put v.status = unsat, contradicting our assumption that
v.status = sat. Thus the rule must be one of the remaining rules, meaning
that v.kind = or-node or v.kind = and-node after this rule application.

2. Second, if v.kind = or-node then v must have two successors created by one
of the rules (�), (cut∀), (cutB), (cut5), since this is the only way for a node
to have v.kind = or-node. If neither successor has status sat then they
must both have status unsat. But Algorithm 2 and procedure propagate
always ensure that unsat is propagated whenever it is found. As soon as the
unsat status of the latter of these two children is found, the ensuing call
to propagate would have ensured that v.status = unsat, contradicting our
assumption that v.status = sat.

3. Third, if v.kind = and-node then v has at least one successor w (say) with
(v, w) ∈ E. If w.status �= sat, then we must have w.status = unsat. But
again, as soon as w gets status unsat, procedure propagate would ensure that
v.status = unsat too, contradicting our assumption that v.status = sat.

Lemma 6. LetG = 〈V,E〉 be the graph constructed by Algorithm 2 for (R, T , X).
For every v ∈ V , if v.status = unsat then v.content is inconsistent w.r.t. (R, T ).

Proof. Using Lemma 5, we can construct a closed tableau w.r.t. (R, T ) for
v.content by induction on the way v depends on its successors and by copy-
ing nodes so that the resulting structure is a (tree) tableau rather than a graph.

Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for (R, T , X). For
v ∈ V with v.status = sat, we say that v0 = v, v1, . . . , vk with k ≥ 0 is a
saturation path of v in G if for each 1 ≤ i ≤ k, we have vi.status = sat, the
edge E(vi−1, vi) was created by an application of a static rule, and vk.content
is closed w.r.t. the static rules. Observe that if v0, . . . , vk is a saturation path of
v0 in G then v0.content ⊆ . . . ⊆ vk.content.

By Lemma 5, if v.status = sat then there exists a saturation path of v in G.

Lemma 7. LetG = 〈V,E〉 be the graph constructed by Algorithm 2 for (R, T , X).
If τ.status = sat then every tableau for X w.r.t. (R, T ) is open.



146 R. Goré and L.A. Nguyen

Proof. Let T be an arbitrary tableau for X w.r.t. (R, T ). We maintain a current
node cn of T that will follow edges of T to pin-point an open branch of T .
Initially we set cn to be the root of T . We also keep a (finite) saturation path
σ of the form σ0, . . . , σk for some σ0 ∈ V and call σ the current saturation path
in G. At the beginning, set σ0 := τ and let σ be a saturation path for σ0 in G:
such a saturation path exists since τ.status = sat. We maintain the invariant
cn.content ⊆ σk.content, where cn.content is the set carried by cn.

Remark 2. By the definition of saturation path, σk.status = sat. The invariant
thus implies that the rule (⊥) is not applicable to cn.

Clearly, the invariant holds at the beginning since σ0 = τ and τ.content =
cn.content and σ0.content ⊆ σk.content. Depending upon the rule applied to cn
in the tableau T , we maintain the invariant by changing the value of the current
node cn of T and possibly also the current saturation path σ in G:

1. Case the tableau rule applied to cn is a static rule. Since cn.content ⊆
σk.content and σk.content is closed w.r.t. the static rules, cn has a successor
u in T with u.content ⊆ σk.content. By setting cn := u, the invariant is
maintained without changing σ.

2. Case the tableau rule applied to cn is the transitional rule (∃R) with principal
concept ∃R.D, and the successor is u ∈ T .

By the invariant, ∃R.D ∈ σk.content. So there must be a node w ∈ V such
that the edge E(σk, w) was created by the application of (∃R) to σk.content
with ∃R.D as the principal concept. Thus, u.content ⊆ w.content by the
form of the (∃R)-rule. Moreover, σk is an and-node with σk.status = sat,
hence w.status �= unsat, meaning that w.status = sat. Setting cn := u and
setting σ to be a saturation path of w in G maintains the invariant.

By Remark 2, the branch formed by the instances of cn is an open branch of T .

Theorem 2. Let R be a SHI RBox, T a TBox, and X a finite set of concepts.
Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for (R, T , X), with
τ ∈ V as the initial node. Then X is satisfiable w.r.t. (R, T ) iff τ.status = sat.

Proof. By Lemmas 6 and 7, X is consistent w.r.t. (R, T ) iff τ.status = sat since
τ.content = X ∪ T . Since the calculus CSHI is sound and complete, it follows
that X is satisfiable w.r.t. (R, T ) iff τ.status = sat.

Corollary 1. Algorithm 2 is an EXPTIME decision procedure for SHI.

Proof. The EXPTIME complexity is established by Proposition 1.

6 Further Work and Conclusions

To the best of our knowledge, we have given the first EXPTIME tableau-based
decision procedure for SHI. The two essential features which allow our decision



EXPTIME Tableaux with Global Caching for SHI 147

procedure to have EXPTIME complexity are the analytic “future guessing” cut
rules in combination with global caching.

Cut rules are usually considered expensive in tableau calculi because of their
exponential nature and because their “blind guessing” produces nondeterminism.
Although the “blind guessing” aspect is still prevalent in our cut rules, global
caching means that an application of a cut rule in our and-or graph creates only
an or-node, deterministically in polynomial time in the size of the graph, but does
not require us to make two copies of the current and-or graph. Nor does it require
us to later “determinise” the effects of “look behind with cut” as queried in the
introduction. Indeed, by building a “use-check” into our procedure, and exploring
the left branch of a cut rule first, we can avoid exploration of the right branch
if the cut formula is not used in closing the left branch. Whether our method
can be turned into practical EXPTIME decision procedures requires further
investigation, but it obeys the basic principle that practical algorithms should
be easy to implement and optimise. Besides, most known optimisation techniques
for DL decision procedures are applicable since they are already incorporated
into our decision procedure for ALC in [6], and it is easy to show that they
transfer to our decision procedure for SHI.

Soundness of global caching for SHI was not previously proved and was really
an open problem. The idea of using analytic cut rules to reduce the complexity
from NEXPTIME to EXPTIME was introduced in [2], but the “future guessing”
form of our analytic cut rules is important and fundamentally different from the
“look behind analytic cut” of [2].

Observe that the transformation of our CSHI calculus into an EXPTIME
decision procedure for SHI is highly independent of the details of the calculus.
The proof of the correctness of the transformation is also highly modular w.r.t.
the calculus. We intend to formulate both at a more abstract level to apply our
method for global caching to other modal and description logics.

References

1. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69, 5–40 (2001)

2. De Giacomo, G., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for Converse-PDL. Information and Computation, pp.
117–137 pp. 87–138 (2000)

3. Ding, Y., Haarslev, V.: Tableau caching for description logics with inverse and
transitive roles. In: Proc. DL-2006: International Workshop on Description Logics,
pp. 143–149 (2006)

4. Donini, F., Massacci, F.: EXPTIME tableaux for ALC. Artificial Intelligence 124,
87–138 (2000)

5. Goré, R.: Tableau methods for modal and temporal logics. In: Agostino, D. (ed.)
Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)

6. Goré, R., Nguyen, L.A.: Optimised EXPTIME tableaux for ALC using sound global
caching, propagation and cutoffs. Manuscript (2007)



148 R. Goré and L.A. Nguyen

7. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward
proof search in some non-classical logics. In: Miglioli, P., Moscato, U., Ornaghi,
M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer,
Heidelberg (1996)

8. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption.
Journal of Logic and Computation 9(3), 267–293 (1999)

9. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. Log. Comput. 9(3), 385–410 (1999)

10. Nguyen, L.A.: Analytic tableau systems and interpolation for the modal logics KB,
KDB, K5, KD5. Studia Logica 69(1), 41–57 (2001)

11. Rautenberg, W.: Modal tableau calculi and interpolation. JPL 12, 403–423 (1983)



Tree-Sequent Methods for

Subintuitionistic Predicate Logics

Ryo Ishigaki1 and Kentaro Kikuchi2

1 Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Japan

2 Research Institute of Electrical Communication,
Tohoku University, Japan

Abstract. Subintuitionistic logics are a class of logics defined by using
Kripke models with more general conditions than those for intuitionistic
logic. In this paper we study predicate logics of this kind by the method
of tree-sequent calculus (a special form of Labelled Deductive System).
After proving the completeness with respect to some classes of Kripke
models, we introduce Hilbert-style axiom systems and prove their com-
pleteness through a translation from the tree-sequent calculi. This gives
a solution to the problem posed by Restall.

1 Introduction

Subintuitionistic logics are a class of logics defined by using Kripke models with
more general conditions than those for intuitionistic logic. They are interpreted in
Kripke models similarly to intuitionistic logic, except that some of the conditions
(reflexivity, transitivity and persistence) on models are not imposed. The propo-
sitional part of these logics has been studied, for example, in [3,5,6,8,15,18,19].
Some of them are considered as the strict implication fragments of the corre-
sponding modal logics, but others such as those in [18] are not.

In [15], Restall described difficulties in extending subintuitionistic logics to
the first-order predicate case. One of the difficulties is that if we take the same
clauses in the definition of Kripke models as the standard ones for intuitionistic
predicate logic then, for instance, the formula ∀xA(x) → A(a) is no longer valid.
This is easily seen in Kripke models whose accessibility relation is not reflexive.
So Restall suggested that the domain of quantification should be the domain of
the world where the quantified formula is interpreted, and that Kripke models
under consideration should have constant domains. However, then proving com-
pleteness turned out to be much more complicated than the propositional case,
and was left as an open problem.

A solution to axiomatizing a predicate extension of a subintuitionistic logic
was given in [20] only for the strict implication fragment of the modal logic S4,
where Zimmermann proved the completeness of a Hilbert-style system using a
Henkin construction. Note that in the case of the strict implication fragment of
S4, one can use a restricted form of the deduction theorem, but it is not clear

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 149–164, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



150 R. Ishigaki and K. Kikuchi

whether the same method works for other predicate extensions of subintuition-
istic logics where the deduction theorem is more restricted.

In this paper, we take a different approach to the problem posed by Restall.
We systematically study predicate extensions of several subintuitionistic logics
by the method of tree-sequent calculus [12], which is a special form of Labelled
Deductive System [7]. This style of formulation is useful in axiomatizing various
logics defined through Kripke models without regard to intuitionistic or modal
languages (see, e.g. [9,10,17]). We prove the completeness of the tree-sequent cal-
culi by constructing a counter model called a saturated tree-sequent. Then we
introduce Hilbert-style axiom systems, and define a translation of tree-sequents
into formulas to show that each inference rule of the tree-sequent calculi is sim-
ulated in the corresponding Hilbert-style systems. This yields the completeness
of the Hilbert-style systems with respect to the corresponding classes of Kripke
models.

In previous work [10], we presented a tree-sequent calculus for a predicate
extension of Visser’s propositional logic [18] whose Kripke models have expand-
ing domains. However, no Hilbert-style system for the predicate logic has been
obtained. One of the points worth mentioning is that in proving completeness
through tree-sequent calculi, models with constant domains are easier to handle
than models with expanding domains, while in the usual Henkin construction
they are more difficult the other way around.

The organization of the paper is as follows. In Section 2 we define subintu-
itionistic logics by using Kripke models. In Section 3 we introduce tree-sequent
calculi. In Section 4 we prove the completeness of the tree-sequent calculi by a
construction of saturated tree-sequents. In Section 5 we introduce Hilbert-style
systems and prove the completeness through a translation from the tree-sequent
calculi. In Section 6 we conclude with a discussion of related work.

To save space we omit some proofs in Section 5, but a full version with all
proofs is available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/.

Notation. Our language L has the following symbols: countably many variables
x1, x2, . . .; countably many m-ary predicate symbols pm

1 , p
m
2 , . . . for each m ∈ N;

and the logical symbols ⊥, ∧, ∨, →, ∀ and ∃. (To simplify the argument, we do
not consider constants or function symbols.) The set of formulas is constructed
from these in the usual way. Parentheses are often omitted using the convention
that ∧ and ∨ bind more strongly than →. We use A,B,C, . . . for formulas.

The symbol � is defined as an abbreviation of the formula ⊥ → ⊥. For a
finite set Φ of formulas,

∧
Φ (resp.

∨
Φ) is defined as the conjunction (resp.

disjunction) of all formulas in Φ, if Φ is non-empty, otherwise � (resp. ⊥).

2 Semantics of Subintuitionistic Logics

Subintuitionistic logics are defined semantically using Kripke models which are
more general than models for intuitionistic logic. The propositional part of these
logics has been studied in the literature (e.g. [5,6,15]) where the least subintu-
itionistic logic is interpreted in the same Kripke models as those for the modal



Tree-Sequent Methods for Subintuitionistic Predicate Logics 151

logic K. The predicate extensions of subintuitionistic logics we consider here are
based on Kripke models with constant domains, following the suggestion in [15].

Below we introduce several predicate extensions of subintuitionistic logics as
sets of formulas that are valid in some classes of Kripke models.

Definition 1 (Model). Let W be a non-empty set, R be a binary relation on
W , and D be a non-empty set. For each m-ary predicate symbol p and each
a ∈ W , we suppose a relation pI(a) on Dm. Then the quadruple 〈W,R,D, I〉 is
called a model.

A model 〈W,R,D, I〉 is said to be (i) reflexive if for any a ∈ W , aRa, (ii)
transitive if for any a, b, c ∈ W , aRb and bRc imply aRc, and (iii) persistent if
for any predicate symbol p and any a, b ∈W , aRb implies pI(a) ⊆ pI(b).

Let M = 〈W,R,D, I〉 be a model, and L[D] be the extended language ob-
tained from L by adding a constant symbol d for each d ∈ D. The relation |=M

between a ∈ W and each closed formula of L[D] is defined inductively as follows:

a |=M p(d1, . . . , dm) iff (d1, . . . , dm) ∈ pI(a);

a �|=M ⊥;

a |=M A ∧B iff a |=M A and a |=M B;

a |=M A ∨B iff a |=M A or a |=M B;

a |=M A→ B iff for all b ∈ W with aRb, b �|=M A or b |=M B;

a |=M ∀xA iff a |=M A[d/x] for all d ∈ D;

a |=M ∃xA iff a |=M A[d/x] for some d ∈ D.

A formula A is valid in a model M = 〈W,R,D, I〉, if a |=M ∀−→x A for all a ∈ W ,
where −→x = 〈x1, . . . , xn〉 is an enumeration of all free variables in A, and ∀−→x is
an abbreviation for ∀x1 · · · ∀xn. (∀−→x A is the universal closure of A.)

The predicate logic KI is defined as the set of all formulas that are valid in
every model. Also, the predicate logics KTI , K4I , S4I and BQLI are defined as
the sets of all formulas that are valid in every reflexive model, transitive model,
reflexive and transitive model, and transitive and persistent model, respectively.
We use the notation X to denote any of the logics KI , KTI , K4I , S4I and BQLI .

An example of a formula that is not necessarily valid in the models defined above
is (A→ (B → C)) → (B → (A→ C)).

The following is an immediate consequence of an induction on the structure
of closed formulas.

Lemma 1. Let M = 〈W,R,D, I〉 be a transitive and persistent model. Then,
for any closed formula A of L[D] and any a, b ∈ W , if aRb and a |=M A then
b |=M A.

Proof. By induction on the structure of A. ��



152 R. Ishigaki and K. Kikuchi

3 Tree-Sequent Calculi

In this section we introduce tree-sequent calculi for subintuitionistic logics as a
special form of Labelled Deductive Systems [7], where labels are used for repre-
senting a tree-structure and its nodes. In the next sections we prove the sound-
ness and completeness of the tree-sequent calculi with respect to the semantics
described in the previous section.

The basic idea of tree-sequent comes from manipulating sequents that reflect
the structure of Kripke models directly. For that, each tree-sequent consists of a
tree of ordinary sequents.

Definition 2 (Tree-sequent). A label is a finite sequence of natural numbers
〈n1, . . . , nm〉. We use letters α, β, . . . for labels. If α = 〈n1, . . . , nm〉 then α · n
denotes the label 〈n1, . . . , nm, n〉. β is an immediate successor (im-successor, for
short) of α, if β = α · n for some natural number n. β is a successor of α, if
β = ((· · · ((α ·n1) ·n2) · · · ) ·nm−1) ·nm for some natural numbers n1, . . . , nm. A
tree is a set of labels T such that 〈〉 ∈ T and for each α ·n ∈ T , α ∈ T . A labelled
formula is a pair α : A where α is a label and A is a formula of the language L.
A tree-sequent is an expression Γ T⇒ Δ where Γ and Δ are finite sets of labelled
formulas, T is a tree, and each label in Γ,Δ is an element of T .

Thus a tree-sequent Γ T⇒ Δ represents a finite labelled tree whose structure is
induced by T . Each node α of it is associated with a sequent Γα ⇒ Δα where
Γα (resp. Δα) is the set of formulas A such that α : A ∈ Γ (resp. α : A ∈ Δ).

Example 1. Let T = {〈〉, 〈1〉, 〈2〉, 〈2, 1〉, 〈2, 2〉}. The tree-sequent

〈〉 : A, 〈〉 : B, 〈1〉 : D, 〈2〉 : F, 〈2, 2〉 : G T⇒ 〈〉 : C, 〈1〉 : E, 〈2, 2〉 : H, 〈2, 2〉 : I

represents the following tree of sequents:

A, B ⇒ C

D ⇒ E F ⇒

⇒ G ⇒ H, I

To make the argument succinct and precise, we use below representation of
sequents with labels rather than the tree form as above. A translation of tree-
sequents into formulas of the language L will be defined in Section 5.

Now we introduce tree-sequent calculi for subintuitionistic logics. These sys-
tems define inference schemas to manipulate tree-sequents. First we introduce
the most basic system TKI , which is the tree-sequent calculus for the logic KI .
The axioms (initial tree-sequents) of TKI are of the following forms:

α : A,Γ T⇒ Δ,α : A (Ax) α : ⊥, Γ T⇒ Δ (⊥L)



Tree-Sequent Methods for Subintuitionistic Predicate Logics 153

The inference rules of TKI are the following:

Γ
T⇒ Δ

α : A,Γ T⇒ Δ
(Weakening L) Γ

T⇒ Δ

Γ
T⇒ Δ,α : B

(Weakening R)

α : A,α : B,Γ T⇒ Δ

α : A ∧B,Γ T⇒ Δ
(∧L)

Γ
T⇒ Δ,α : A Γ

T⇒ Δ,α : B

Γ
T⇒ Δ,α : A ∧B

(∧R)

α : A,Γ T⇒ Δ α : B,Γ T⇒ Δ

α : A ∨B,Γ T⇒ Δ
(∨L)

Γ
T⇒ Δ,α : A,α : B

Γ
T⇒ Δ,α : A ∨B

(∨R)

Γ
T⇒ Δ,α · n : A α · n : B,Γ T⇒ Δ

α : A→ B,Γ
T⇒ Δ

(→L)

α · n : A,Γ
T ∪{α·n}⇒ Δ,α · n : B

Γ
T⇒ Δ,α : A→ B

(→R)‡

α : A[y/x], Γ T⇒ Δ

α : ∀xA, Γ T⇒ Δ
(∀L)

Γ
T⇒ Δ,α : A[z/x]

Γ
T⇒ Δ,α : ∀xA

(∀R)VC

α : A[z/x], Γ T⇒ Δ

α : ∃xA, Γ T⇒ Δ
(∃L)VC

Γ
T⇒ Δ,α : A[y/x]

Γ
T⇒ Δ,α : ∃xA

(∃R)

where the subscript VC means the eigenvariable condition: z does not occur in
the conclusion. The superscript ‡ means the following condition: α · n does not
occur in T .

The above tree-sequent calculus TKI has no cut rule. It also dispenses with
contraction rules since a tree-sequent consists of finite sets of labelled formulas.

In Fig. 1, we show the rules (→L) and (→R)‡ with representation in the tree
form. In the rule (→L), the formula A → B is introduced in the antecedent of
the parent of the node having the formula A or B in the premisses. Similarly,
in the rule (→R)‡, the formula A → B is introduced in the succedent of the
parent node. Note that, by the condition of the rule (→R)‡, the node having the
sequent A⇒ B in the premiss is trimmed in the conclusion.

Example 2. The tree-sequent
{〈〉}⇒ 〈〉 : ∀x(A→ B) → (A→ ∀xB), where x is not

free in A, is provable in TKI as follows. Let T = {〈〉, 〈1〉, 〈1, 1〉}. Then

〈1, 1〉 : A
T⇒ 〈1, 1〉 : B, 〈1, 1〉 : A 〈1, 1〉 : B, 〈1, 1〉 : A

T⇒ 〈1, 1〉 : B

〈1〉 : A → B, 〈1, 1〉 : A
T⇒ 〈1, 1〉 : B

(→L)

〈1〉 : ∀x(A → B), 〈1, 1〉 : A
T⇒ 〈1, 1〉 : B

(∀L)

〈1〉 : ∀x(A → B), 〈1, 1〉 : A
T⇒ 〈1, 1〉 : ∀xB

(∀R)VC

〈1〉 : ∀x(A → B)
{〈〉,〈1〉}⇒ 〈1〉 : A → ∀xB

(→R)‡

{〈〉}⇒ 〈〉 : ∀x(A → B) → (A → ∀xB)
(→R)‡



154 R. Ishigaki and K. Kikuchi

...

Γα ⇒ Δα

· · · Γα·n ⇒ Δα·n, A

· · · · · ·

...

Γα ⇒ Δα

· · · B, Γα·n ⇒ Δα·n

· · · · · ·

...

A → B, Γα ⇒ Δα

· · · Γα·n ⇒ Δα·n

· · · · · · (→L)

...

Γα ⇒ Δα

· · · A ⇒ B

...

Γα ⇒ Δα, A → B

· · · (trimmed)
(→R)‡

Fig. 1. (→L) and (→R)‡ in the tree form

The tree-sequent formulation works also for logics with modal language by
regarding the formula � → A of subintuitionistic logics as �A of modal logics.
For instance, a tree-sequent calculus for a predicate version of the modal logic K
may be defined as a system with the following rules for the modal operator:

α · n : A,Γ T⇒ Δ

α : �A,Γ T⇒ Δ
(�L)

Γ
T ∪{α·n}⇒ Δ,α · n : A

Γ
T⇒ Δ,α : �A

(�R)‡

The completeness theorem of the tree-sequent calculus for K is proved similarly
to that for TKI in the next section.

Next we introduce tree-sequent calculi for the logics KTI , K4I , S4I and BQLI

defined in the previous section. The tree-sequent calculus TKTI is obtained from
TKI by adding the following rule:

Γ
T⇒ Δ,α : A α : B,Γ T⇒ Δ

α : A→ B,Γ
T⇒ Δ

(→LRef)

The tree-sequent calculus TK4I is obtained from TKI by adding the following
rule:

α · n : A→ B,Γ
T⇒ Δ

α : A→ B,Γ
T⇒ Δ

(→LTran)



Tree-Sequent Methods for Subintuitionistic Predicate Logics 155

The tree-sequent calculus TS4I is obtained from TKI by adding both of the rules
(→LRef) and (→LTran). Finally, the tree-sequent calculus TBQLI is obtained
from TKI by adding the following rule:

α · n : A,Γ T⇒ Δ

α : A,Γ T⇒ Δ
(Drop)

In the sequel, we use the notation TX to denote any of the tree-sequent calculi
TKI , TKTI , TK4I , TS4I and TBQLI .

4 Completeness of Tree-Sequent Calculi

In this section we show that the tree-sequent calculi introduced in the previous
section are sufficient to prove all formulas that are valid in the respective classes
of Kripke models. For this purpose we construct a counter model for any formula
that is not provable in each tree-sequent calculus. The converse directions, i.e.,
all provable formulas are valid, are shown through the soundness of Hilbert-style
systems in the next section.

In the following, Γ,Δ and T are possibly infinite in the expression Γ T⇒ Δ
of a tree-sequent. In the case where Γ,Δ and T are all finite, the tree-sequent
Γ

T⇒ Δ is said to be finite. A (possibly infinite) tree-sequent Γ T⇒ Δ is provable

in TX , if Γ ′ T ′
⇒ Δ′ is provable in TX for some finite tree-sequent Γ ′ T ′

⇒ Δ′ such
that Γ ′ ⊆ Γ , Δ′ ⊆ Δ and T ′ ⊆ T .

Definition 3 (TX -saturatedness). A tree-sequent Γ T⇒ Δ is TX -saturated,
if it satisfies the following conditions:

– Γ
T⇒ Δ is not provable in TX ;

– (For TBQLI only) If α : A ∈ Γ , then β : A ∈ Γ for every successor β of α;
– For any α ∈ T ,

[(∧L)] If α : A ∧B ∈ Γ , then α : A ∈ Γ and α : B ∈ Γ ;
[(∧R)] If α : A ∧B ∈ Δ, then α : A ∈ Δ or α : B ∈ Δ;
[(∨L)] If α : A ∨B ∈ Γ , then α : A ∈ Γ or α : B ∈ Γ ;
[(∨R)] If α : A ∨B ∈ Δ, then α : A ∈ Δ and α : B ∈ Δ;
[(→L)] If α : A → B ∈ Γ , then α · n : A ∈ Δ or α · n : B ∈ Γ for every

im-successor α · n of α;
[(→LRef)] (For TKTI/TS4I only) If α : A → B ∈ Γ , then α : A ∈ Δ or
α : B ∈ Γ ;

[(→LTran)] (For TK4I/TS4I only) If α : A→ B ∈ Γ , then β : A→ B ∈ Γ
for every successor β of α;

[(→R)] If α : A→ B ∈ Δ, then there exists an im-successor α · n of α such
that α · n : A ∈ Γ and α · n : B ∈ Δ;

[(∀L)] If α : ∀xA ∈ Γ , then α : A[y/x] ∈ Γ for every variable y;
[(∀R)] If α : ∀xA ∈ Δ, then α : A[z/x] ∈ Δ for some variable z;
[(∃L)] If α : ∃xA ∈ Γ , then α : A[z/x] ∈ Γ for some variable z;
[(∃R)] If α : ∃xA ∈ Δ, then α : A[y/x] ∈ Δ for every variable y.



156 R. Ishigaki and K. Kikuchi

The next lemma shows that any unprovable tree-sequent extends to a TX -
saturated tree-sequent, which represents a counter model to the tree-sequent.
The process of this extension differs from the usual Henkin-style construction in
that it handles the whole counter model rather than separate nodes of a model.
The structure of tree-sequents is thus useful in proving completeness of various
logics defined through Kripke models.

Lemma 2. If a finite tree-sequent Γ T⇒ Δ is not provable in TX , then there

exists a TX -saturated tree-sequent Γ+ T +

⇒ Δ+ such that Γ ⊆ Γ+, Δ ⊆ Δ+ and
T ⊆ T +.

Proof. Suppose that a finite tree-sequent Γ T⇒ Δ is not provable in TX . In the

following, we construct an infinite sequence of finite tree-sequents Γ 1 T 1

⇒ Δ1,

Γ 2 T 2

⇒ Δ2, . . . and obtain Γ+ T +

⇒ Δ+ as the union of them.
Let B1, B2, . . . be an enumeration of all formulas of the language L such that

each formula appears infinitely many times. We also enumerate all variables as
x1, x2, . . . .

Let Γ 1 T 1

⇒ Δ1 ≡ Γ
T⇒ Δ. The i-th step, which is the step of extension

from Γ i T i

⇒ Δi to Γ i+1 T i+1

⇒ Δi+1, consists of operations for the formula Bi. In
these operations, unprovability of the tree-sequent is preserved. The operations
executed in the i-th step are as follows:

– (For TBQLI only) For each α ∈ T i, if α : Bi ∈ Γ i, then add β : Bi to Γ i for
every successor β of α. Unprovability is preserved because of the inference
rule (Drop).

– According to the form of Bi, one of the following operations is executed for
each label α ∈ T i.
• [Bi is of the form C ∧D]

If α : Bi ∈ Γ i, then add α : C and α : D to Γ i. Unprovability is preserved
because of the inference rule (∧L).
If α : Bi ∈ Δi, then add α : C or α : D to Γ i, so that unprovability is
preserved because of the inference rule (∧R).

• [Bi is of the form C ∨D]
Symmetric to the case for C ∧D.

• [Bi is of the form C → D]
(For TKI/TBQLI) If α : Bi ∈ Γ i, then add α · n : C to Δi or α · n : D
to Γ i for each im-successor α ·n of α, so that unprovability is preserved.
(For TKTI) If α : Bi ∈ Γ i, then add α : C to Δi or α : D to Γ i, and
add α · n : C to Δi or α · n : D to Γ i for each im-successor α · n of α, so
that unprovability is preserved.
(For TK4I) If α : Bi ∈ Γ i, then add β : Bi to Γ i for every successor β of
α, and add α · n : C to Δi or α · n : D to Γ i for each im-successor α · n
of α, so that unprovability is preserved.
(For TS4I) If α : Bi ∈ Γ i, then add β : Bi to Γ i for every successor β of
α, add α : C to Δi or α : D to Γ i, and add α ·n : C to Δi or α ·n : D to
Γ i for each im-successor α · n of α, so that unprovability is preserved.



Tree-Sequent Methods for Subintuitionistic Predicate Logics 157

(For TX ) If α : Bi ∈ Δi, then add a new im-successor α · n of α to T i,
add α · n : C to Γ i, and add α · n : D to Δi. Unprovability is preserved
because of the inference rule (→R)‡.

• [Bi is of the form ∀xC]
If α : Bi ∈ Γ i, then add α : C[x1/x], . . . , α : C[xi/x] to Γ i. Unprovability
is preserved because of the inference rule (∀L).
If α : Bi ∈ Δi, then take a fresh variable z, and add α : C[z/x] to Δi.
Unprovability is preserved because of the inference rule (∀R)VC.

• [Bi is of the form ∃xC]
Symmetric to the case for ∀xC.

Now let Γ+ T +

⇒ Δ+ ≡
⋃∞

n=1 Γ
n
�∞

n=1 T n

⇒
⋃∞

n=1Δ
n. It is easy to verify that the

tree-sequent Γ+ T +

⇒ Δ+ is TX -saturated. ��

We are now ready to prove the completeness of the tree-sequent calculi.

Theorem 1 (Completeness of TX ). For any formula A, if A ∈ X then the

tree-sequent
{〈〉}⇒ 〈〉 : A is provable in TX .

Proof. Suppose that
{〈〉}⇒ 〈〉 : A is not provable in TX . Then by Lemma 2, there

exists a TX -saturated tree-sequent Γ+ T +

⇒ Δ+ such that {〈〉 : A} ⊆ Δ+. Now
we define a model M = 〈W,R,D, I〉 as follows:

– W is T +;
– (For TKI) αRβ iff β is an im-successor of α in T +;

(For TKTI) αRβ iff α = β or β is an im-successor of α in T +;
(For TK4I/TBQLI) αRβ iff β is a successor of α in T +;
(For TS4I) αRβ iff α = β or β is a successor of α in T +;

– D is the set of all variables;
– (y1, . . . , ym) ∈ pI(α) iff α : p(y1, . . . , ym) ∈ Γ+.

It is easy to verify that M satisfies the conditions of respective models.
Now we show by induction on B that for any labelled formula α : B,

– if α : B ∈ Γ+ then α |=M B[−→xB/
−→xB], and

– if α : B ∈ Δ+ then α �|=M B[−→xB/
−→xB],

where −→xB is an enumeration of all free variables in B. Here we consider only the
cases where B is of the form C → D and of the form ∀xC.

• [B is of the form C → D]
(For TKI) If α : B ∈ Γ+ then by the TKI -saturatedness, for any im-
successor α · n of α, we have α · n : C ∈ Δ+ or α · n : D ∈ Γ+. By the
induction hypothesis, we have α · n �|=M C[−→xC/

−→xC ] or α · n |=M D[−→xD/
−→xD].

Hence, α |=M (C → D)[−−−−→xC→D/
−−−−→xC→D].

(For TKTI) If α : B ∈ Γ+ then by the TKTI-saturatedness, α : C ∈ Δ+ or
α : D ∈ Γ+, and for any im-successor α · n of α, we have α · n : C ∈ Δ+ or



158 R. Ishigaki and K. Kikuchi

α · n : D ∈ Γ+. By the induction hypothesis, we have α �|=M C[−→xC/
−→xC ] or

α |=M D[−→xD/
−→xD], and α · n �|=M C[−→xC/

−→xC ] or α · n |=M D[−→xD/
−→xD]. Hence,

α |=M (C → D)[−−−−→xC→D/
−−−−→xC→D].

(For TK4I/TBQLI) If α : B ∈ Γ+ then by the TK4I/TBQLI -
saturatedness, for any successor β of α, we have β : B ∈ Γ+, and β : C ∈ Δ+

or β : D ∈ Γ+. By the induction hypothesis, we have β �|=M C[−→xC/
−→xC ] or

β |=M D[−→xD/
−→xD]. Hence, α |=M (C → D)[−−−−→xC→D/

−−−−→xC→D].
(For TS4I) If α : B ∈ Γ+ then by the TS4I -saturatedness, α : C ∈ Δ+

or α : D ∈ Γ+, and for any successor β of α, we have β : B ∈ Γ+, and
β : C ∈ Δ+ or β : D ∈ Γ+. By the induction hypothesis, we have α �|=M

C[−→xC/
−→xC ] or α |=M D[−→xD/

−→xD], and β �|=M C[−→xC/
−→xC ] or β |=M D[−→xD/

−→xD].
Hence, α |=M (C → D)[−−−−→xC→D/

−−−−→xC→D].
(For TX ) If α : B ∈ Δ+ then by the TX -saturatedness, there exists an
im-successor α · n of α such that α · n : C ∈ Γ+ and α · n : D ∈ Δ+. By the
induction hypothesis, we have α ·n |=M C[−→xC/

−→xC ] and α ·n �|=M D[−→xD/
−→xD].

Hence, α �|=M (C → D)[−−−−→xC→D/
−−−−→xC→D].

• [B is of the form ∀xC]
If α : B ∈ Γ+ then by the TX -saturatedness, α : C[y/x] ∈ Γ+ for any vari-
able y. By the induction hypothesis, α |=M C[y/x][−−−−→xC[y/x]/

−−−−→xC[y/x]], which

means α |=M C[
−−−→
xC\x/

−−−→
xC\x][y/x]. Hence, we have α |=M ∀xC[−→xB/

−→xB], i.e.,
α |=M (∀xC)[−→xB/

−→xB].
The case where α : B ∈ Δ+ is proved similarly.

Since 〈〉 : A ∈ Δ+, we have 〈〉 �|=M A[−→xA/
−→xA]. Hence, A is not valid in this

model M . ��

5 Completeness of Hilbert-Style Systems

In this section we introduce Hilbert-style systems for the predicate extensions of
subintuitionistic logics, and investigate their relationships with the tree-sequent
calculi. Hilbert-style systems for subintuitionistic propositional logics have been
studied in [5,6,15]. Here we define a translation of tree-sequents into formulas,
and show that each inference rule of the tree-sequent calculi is simulated in the
corresponding Hilbert-style systems. This yields the completeness of the Hilbert-
style systems with respect to the classes of Kripke models.

First we introduce the system HKI , which is a Hilbert-style system for the
least subintuitionistic logic KI . The axioms of HKI are the following:

(A1) A→ A,

(A2) (A→ B) ∧ (B → C) → (A→ C),

(A3) A ∧B → A,

(A4) A ∧B → B,

(A5) (A→ B) ∧ (A→ C) → (A→ B ∧ C),



Tree-Sequent Methods for Subintuitionistic Predicate Logics 159

(A6) A→ A ∨B,

(A7) B → A ∨B,

(A8) (A→ C) ∧ (B → C) → (A ∨B → C),

(A9) A ∧ (B ∨ C) → (A ∧B) ∨ (A ∧ C),

(A10) ⊥ → A,

(A11) ∀xA→ A[y/x],

(A12) A[y/x]→ ∃xA,

(A13) ∀x(A ∨B)→ ∀xA ∨B where x is not free in B,

(A14) ∃xA ∧B → ∃x(A ∧B) where x is not free in B,

(A15) ∀x(B → A)→ (B → ∀xA) where x is not free in B,

(A16) ∀x(A→ B)→ (∃xA→ B) where x is not free in B.

The inference rules of HKI are the following:

A A→ B
B

(MP) A
B → A

(AF) A B
A ∧B (∧ I) A

∀xA (GR)

Hilbert-style systems for the logics KTI , K4I , S4I and BQLI are introduced as
follows. The system HKTI is obtained from HKI by adding the following axiom:

(A17) A ∧ (A→ B)→ B.

The system HK4I is obtained from HKI by adding the following axiom:

(A18) (A→ B) → (C → (A→ B)).

The system HS4I is obtained from HKI by adding both of the axioms (A17) and
(A18). It is the same in provability as the system of [20], but has more natural
axioms on ∨ and ∃. Finally, the system HBQLI is obtained from HKI by adding
the following axiom:

(A19) A→ (B → A).

In the sequel, we use the notation HX to denote any of the Hilbert-style
systems HKI , HKTI , HK4I , HS4I and HBQLI .

Theorem 2 (Soundness of HX ). For any formula A, if A is provable in HX
then A ∈ X .

Proof. By induction on the proof of A in HX . ��

In the rest of this section, we prove the completeness of the Hilbert-style systems.
The difficulty doing this lies in that the deduction theorem is not available in
these systems. So we provide below some derivable rules and formulas instead.



160 R. Ishigaki and K. Kikuchi

Lemma 3. The following rules are derivable in HX :

A→ B B → C
A→ C

(Tr) A→ B A→ C
A→ B ∧C (→∧ I)

A→ (B → C) A→ (C → D)
A→ (B → D)

(→Tr)

B → C A→ (C → D)
A→ (B → D)

(Tr 2)
A→ (B → C) C → D

A→ (B → D)
(Tr 3)

A→ B
(B → C) → (A→ C)

(Suff) A→ B
(C → A)→ (C → B)

(Pref)

Note 1. These rules are used in an inductive proof of the equivalent replacement,
which justifies such an expression as

∧
Γ with the associativity and commuta-

tivity of ∧ on provability in HX .

Lemma 4. The following formulas are provable in HX :

1. (A→ B)→ (A ∨ C → B ∨ C),

2. A ∧ (B ∨ C) → B ∨ (A ∧ C),

3. (A ∨B) ∧ (A ∨ C) → A ∨ (B ∧ C).

Lemma 5. The following rules are derivable in HX :

A
C → D ∨A (R1)

A1 → A

(C → D ∨A1) → (C → D ∨A)
(R2)

A1 ∧A2 → A

(C → D ∨A1) ∧ (C → D ∨A2) → (C → D ∨A)
(R3)

Next we define a translation of tree-sequents into formulas. (In the following,
tree-sequents are all finite.)

Definition 4 (Formulaic translation). Let Γ T⇒ Δ be a tree-sequent. For
each α ∈ T , the formula [[Γ T⇒ Δ]]α is defined inductively as follows:

[[Γ T⇒ Δ]]α ≡ (
∧
Γα)→ (

∨
Δα) ∨ [[Γ T⇒ Δ]]α·n1 ∨ · · · ∨ [[Γ T⇒ Δ]]α·nk

where {α ·n1, . . . , α ·nk} is the set of im-successors of α in T , and Γα (resp. Δα)
is the set of formulas A with α : A ∈ Γ (resp. α : A ∈ Δ). Then the formulaic
translation of Γ T⇒ Δ is defined as the universal closure of [[Γ T⇒ Δ]]〈〉.

Now our aim is to show that for any tree-sequent that is provable in one of the
tree-sequent calculi, its formulaic translation is provable in the corresponding
Hilbert-style system. To facilitate the proof, we give some lemmas.

Lemma 6. Let Γ T⇒ Δ, Γ 1 T 1

⇒ Δ1 and Γ 2 T 2

⇒ Δ2 be tree-sequents that have the
same structure except for the parts associated with α · n ∈ T ∩ T 1 ∩ T 2 and all
of its successors.



Tree-Sequent Methods for Subintuitionistic Predicate Logics 161

�
�
�
�

�
�

�
�

�
�
�

�
�

�

�
�
�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
��

�
��

T
α · n

T 1
α · n

T 2
α · n

1. If [[Γ T⇒ Δ]]α·n is provable in HX , then [[Γ T⇒ Δ]]α is provable in HX .

2. If [[Γ 1 T 1

⇒ Δ1]]α·n → [[Γ T⇒ Δ]]α·n is provable in HX , then [[Γ 1 T 1

⇒ Δ1]]α
→ [[Γ T⇒ Δ]]α is provable in HX .

3. If [[Γ 1 T 1

⇒ Δ1]]α·n ∧ [[Γ 2 T 2

⇒ Δ2]]α·n → [[Γ T⇒ Δ]]α·n is provable in HX , then

[[Γ 1 T 1

⇒ Δ1]]α ∧ [[Γ 2 T 2

⇒ Δ2]]α → [[Γ T⇒ Δ]]α is provable in HX .

Proof. Direct application of Lemma 5. ��

Lemma 7. Let Γ T⇒ Δ, Γ 1 T 1

⇒ Δ1 and Γ 2 T 2

⇒ Δ2 be tree-sequents that have the
same structure except for the parts associated with α ∈ T ∩ T 1 ∩ T 2 and all of
its successors.

1. Suppose that [[Γ T⇒ Δ]]α is provable in HX . Then, [[Γ T⇒ Δ]]〈〉 is provable in
HX .

2. Suppose that [[Γ 1 T 1

⇒ Δ1]]α → [[Γ T⇒ Δ]]α is provable in HX . Then, if [[Γ 1 T 1

⇒
Δ1]]〈〉 is provable in HX then [[Γ T⇒ Δ]]〈〉 is provable in HX .

3. Suppose that [[Γ 1 T 1

⇒ Δ1]]α ∧ [[Γ 2 T 2

⇒ Δ2]]α → [[Γ T⇒ Δ]]α is provable in HX .

Then, if [[Γ 1 T 1

⇒ Δ1]]〈〉 and [[Γ 2 T 2

⇒ Δ2]]〈〉 are provable in HX then [[Γ T⇒ Δ]]〈〉
is provable in HX .

Proof. Easily seen by applying Lemma 6 as many times as the length of α. ��

Lemma 8. The following formulas are provable in HX :

1. A ∧ C → D ∨A,

2. ⊥ ∧ C → D,

3. (C → D)→ (A ∧ C → D),

4. (C → D)→ (C → D ∨B),

5. (C → D ∨A) ∧ (C → D ∨B)→ (C → D ∨ (A ∧B)),

6. (A ∧ C → D) ∧ (B ∧ C → D)→ ((A ∨B) ∧ C → D),

7. (C → D ∨ (E → F ∨A)) ∧ (C → D ∨ (B ∧ E → F ))
→ ((A→ B) ∧ C → D ∨ (E → F )),

8. (A[y/x] ∧ C → D) → (∀xA ∧ C → D),

9. (C → D ∨A[y/x]) → (C → D ∨ ∃xA).

The following formula is provable in HKTI/HS4I :

10. (C → D ∨A) ∧ (B ∧ C → D)→ ((A→ B) ∧ C → D).



162 R. Ishigaki and K. Kikuchi

The following formula is provable in HK4I/HS4I :

11. (C → D ∨ ((A→ B) ∧ E → F )) → ((A→ B) ∧ C → D ∨ (E → F )).

The following formula is provable in HBQLI :

12. (C → D ∨ (A ∧ E → F )) → (A ∧ C → D ∨ (E → F )).

Now we prove a crucial lemma for the completeness of the Hilbert-style systems.

Lemma 9. For any tree-sequent Γ T⇒ Δ, if Γ T⇒ Δ is provable in TX , then the
formulaic translation of Γ T⇒ Δ is provable in HX .

Proof. By induction on the proof of Γ T⇒ Δ in TX . All cases except the rules
(∀R)VC and (∃L)VC immediately follow from Lemmas 7 and 8. Here we consider
the case where the last applied rule is (∀R)VC. Then by the induction hypothesis,
the universal closure of ∀z[[Γ T⇒ Δ,α : A[z/x]]]〈〉 is provable in HX , where

[[Γ T⇒ Δ,α : A[z/x]]]〈〉 ≡
(
∧
Γ〈〉)→ (

∨
Δ〈〉) ∨ [[Γ T⇒ Δ,α : A[z/x]]]〈n1〉 ∨ · · · ∨ [[Γ T⇒ Δ,α : A[z/x]]]〈nk〉

and {〈n1〉, . . . , 〈nk〉} is the set of im-successors of 〈〉 in T . Now, using (A15),
(A13) and (Tr 3) repeatedly, we can move ∀z to the front of A[z/x] at the node
α. Hence the universal closure of [[Γ T⇒ Δ,α : ∀zA[z/x]]]〈〉 is provable in HX .

The case where the last applied rule is (∃L)VC is proved similarly using also
(A16) and (A14). ��

We can now prove the completeness of the Hilbert-style systems as well as the
soundness of the tree-sequent calculi.

Theorem 3 (Completeness of HX , Soundness of TX ). For any formula
A, the following are equivalent :

1. A ∈ X ,

2. A is provable in HX ,

3.
{〈〉}⇒ 〈〉 : A is provable in TX .

Proof. (1 ⇒ 3) This follows from Theorem 1.

(3 ⇒ 2) Suppose that the tree-sequent
{〈〉}⇒ 〈〉 : A is provable in TX . Then by

Lemma 9, the universal closure of [[
{〈〉}⇒ 〈〉 : A]]〈〉 is provable in HX , and hence

� → A is provable in HX . Therefore, A is provable in HX .
(2 ⇒ 1) This follows from Theorem 2. ��

6 Conclusion

We have studied predicate extensions of subintuitionistic logics by the method of
tree-sequent calculus. First we introduced tree-sequent calculi and proved their



Tree-Sequent Methods for Subintuitionistic Predicate Logics 163

completeness with respect to the semantics of subintuitionistic logics. Then we
defined a translation of tree-sequents into formulas of the intuitionistic language
and proved the completeness of new Hilbert-style systems using the translation.

It seems difficult to axiomatize predicate extensions of subintuitionistic log-
ics in the style of traditional sequent calculus as found in [11,13,14]. There are
also algebraic approaches to subintuitionistic logics using properties of distribu-
tive lattices [1,4,16]. However, those studies are limited to the propositional case,
and completeness for predicate extensions of subintuitionistic logics has not been
obtained by algebraic methods. On the other hand, our approach based on struc-
tured sequents can produce requirements, like Lemmas 5 and 8, for completeness
of formal systems for various propositional and predicate logics defined through
Kripke models. It might be possible to use other formalisms with structured se-
quents, e.g. display logic [2,19], for axiomatizing predicate extensions of subintu-
itionistic logics (see also discussions in [8]). Making precise connections between
such formalisms and ours is to be investigated and left as future work.

Acknowledgements. We are grateful to Ryo Kashima for giving us introduc-
tions to tree-sequent calculus and Ichiro Hasuo for advice on drawing diagrams
of tree-sequents. We also thank anonymous referees for valuable comments. This
work was partially supported by the Japanese Ministry of Education, Culture,
Sports, Science and Technology, Grant-in-Aid for Young Scientists (B) 17700003.

References

1. Ardeshir, M., Ruitenburg, W.: Basic Propositional Calculus I. Math. Logic
Quart 44, 317–343 (1998)

2. Belnap, N.D.: Display logic. J. Philos. Logic 11, 375–417 (1982)
3. Celani, S., Jansana, R.: A closer look at some subintuitionistic logics. Notre Dame

J. Formal Logic 42, 225–255 (2001)
4. Celani, S., Jansana, R.: Bounded distributive lattices with strict implication. Math.

Logic Quart 51, 219–246 (2005)
5. Corsi, G.: Weak logics with strict implication. Z. Math. Logik Grundlag. Math 33,

389–406 (1987)
6. Došen, K.: Modal translations in K and D. In: de Rijke, M. (ed.) Diamonds and

Defaults, pp. 103–127. Kluwer Academic Publishers, Boston (1993)
7. Gabbay, D.M.: Labelled Deductive Systems. Oxford University Press, New York

(1996)
8. Gabbay, D.M., Olivetti, N.: Algorithmic proof methods and cut elimination for

implicational logics I: Modal implication. Studia Logica 61, 237–280 (1998)
9. Hasuo, I., Kashima, R.: Kripke completeness of first-order constructive logics with

strong negation. Log. J. IGPL 11, 615–646 (2003)
10. Ishigaki, R., Kikuchi, K.: A tree-sequent calculus for a natural predicate extension

of Visser’s propositional logic. To appear in Log. J. IGPL
11. Ishii, K., Kashima, R., Kikuchi, K.: Sequent calculi for Visser’s propositional logics.

Notre Dame J. Formal Logic 42, 1–22 (2001)
12. Kashima, R.: Sequent calculi of non-classical logics — Proofs of completeness the-

orems by sequent calculi (in Japanese). In: Proceedings of Mathematical Society
of Japan Annual Colloquium of Foundations of Mathematics, pp. 49–67 (1999)



164 R. Ishigaki and K. Kikuchi

13. Kikuchi, K.: Dual-context sequent calculus and strict implication. Math. Logic
Quart 48, 87–92 (2002)

14. Kikuchi, K., Sasaki, K.: A cut-free Gentzen formulation of Basic Propositional
Calculus. J. Logic Lang. Inform 12, 213–225 (2003)

15. Restall, G.: Subintuitionistic logics. Notre Dame J. Formal Logic 35, 116–129 (1994)
16. Suzuki, Y., Wolter, F., Zakharyaschev, M.: Speaking about transitive frames in

propositional languages. J. Logic Lang. Inform 7, 317–339 (1998)
17. Tanaka, Y.: Cut-elimination theorems for some infinitary modal logics. Math. Logic

Quart 47, 327–339 (2001)
18. Visser, A.: A propositional logic with explicit fixed points. Studia Logica 40, 155–

175 (1981)
19. Wansing, H.: Displaying as temporalizing, sequent systems for subintuitionistic

logics. In: Akama, S. (ed.) Logic, Language and Computation, pp. 159–178. Kluwer
Academic Publishers, Boston (1997)

20. Zimmermann, E.: A predicate logical extension of a subintuitionistic propositional
logic. Studia Logica 72, 401–410 (2002)



A Sequent Calculus for Bilattice-Based Logic

and Its Many-Sorted Representation

Ekaterina Komendantskaya�

Department of Mathematics,
University College Cork,

Ireland
e.komendantskaya@mars.ucc.ie

Abstract. We introduce a sequent calculus for bilattice-based anno-
tated logic (BAL). We show that this logic can be syntactically and se-
mantically translated into a fragment MSL∗ of conventional many-sorted
logic MSL. We show deductive equivalence of sequent calculus for BAL
and sequent calculus for MSL∗.

1 Introduction

Lattice and bilattice-based logics were originally introduced by several inde-
pendent authors, such as Kifer, Lozinskii, Subrahmanian [15,16], Fitting [7,8,9];
Lu, Murray and Rosenthal [20,21,22] and were further developed in [13,24,25].
See also [14,1] for a very good survey of many-valued proof procedures. These
logics were seen as a formalism suitable for automated reasoning about uncer-
tainty. Most of the mentioned approaches made use of the so-called annotated,
or signed, languages, where elements of a set of truth values are allowed in the
syntax of the language. We will follow the approach of [15,16,13,25] and attach
annotations to first-order formulae, such that a typical annotated atom of the
language will be of the form A : μ, where A is a first-order atom, and μ repre-
sents some annotation taken from a set of truth-values. Complex formulae can
be built using these atoms.

We propose a sequent calculus for a first-order bilattice-based annotated logic
(BAL). Although the papers we mentioned above provided us with many inter-
esting insights and techniques, the calculus we define here is the first sequent
calculus for a full fragment of bilattice-based annotated logics we know of.

Syntactically, we follow [16] and allow not only constant annotations, as in
signed logics ([20,21,13,24,25]), but also annotation variables and terms. We
develop the annotated syntax of [16] and enrich it by new bilattice connectives
and quantifiers and also we allow annotations over complex first-order formulae,
which is a reasonable option for annotated logics.

� I am grateful to the anonymous referees for their useful comments and suggestions.
I thank the grant “Categorical Semantics for Natural Methods of Computation” by
the Royal Society/Royal Irish Academy.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 165–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



166 E. Komendantskaya

Semantically, we work with arbitrary distributive bilattices defined in [10,11].
We believe that a one-lattice fragment of BAL can be described, with some syn-
tactical restrictions, in terms of lattice-based annotated logics [13,15,16,24,25].
However, the second lattice constituting the underlying bilattice of BAL deter-
mines some novel and non-trivial properties of its models and sequent calculus,
see Proposition 2.

The many-valued sequent calculus for BAL was not our primary goal, though.
In the second part of the paper we use it for a more general purpose of receiving
a conventional syntactical and semantical representation of annotated many-
valued logics. Annotated logics are being criticised for allowing semantics inter-
fere with their syntax. Because of their complicated syntax, these logics have
not yet received a sufficiently general structural or categorical characterisation,
see also [18] for some discussion of this.

Here we continue the work of Manzano [23] translating different non-classical
logics into conventional many-sorted logic. We show here that BAL can be se-
mantically, syntactically, and deductively translated into many-sorted logic of
[4,23]. The method of translation can be applied, with minor modifications, to
any many-valued annotated logic we mentioned above. Moreover, our results,
together with well-known results of Manzano [23] on translation of dynamic
(modal) logic and second-order logic into many-sorted logic, include many-valued
logics into the family of non-classical logics representable in many-sorted logic.
This enables us to compare some properties of (bi)lattice-based logics and the
non-classical logics just mentioned.

The structure of the paper is as follows. In Section 2, we define bilattices fol-
lowing [11,10]. In Section 3, we describe Bilattice-Based Annotated Logic (BAL)
and sequent calculus for it. In Section 4, we define a fragment MSL∗ of the many-
sorted logic MSL, which we use for translation of BAL. In the same section, we
show the syntactical, semantical and deductive equivalence of BAL and MSL∗.
We summarise the results of the previous sections and outline the future work
in Section 5.

2 Bilattices

In this section we briefly discuss bilattices and their properties, which will be useful
in later sections, where we define bilattice-based language and theory. Notion of a
bilattice generalises the Belnap’s lattice with four values - true, false, none, both.
This lattice of Belnap suggested that we can compare facts not only from the point
of view of them being true or false, but we can also question how much information
about facts is available to us. This gave rise to the notion of a bilattice - a structure
with two orderings, usually called truth and knowledge ordering.

We use the well-known definition of bilattices due to Ginsberg, see [11] or [10].

Definition 1. A bilattice B is a sextuple (B,∨,∧,⊕,⊗,¬) such that (B,∨,∧)
and (B,⊕,⊗) are both complete lattices, and ¬ : B→ B is a mapping satisfying
the following three properties: ¬2 = IdB, ¬ is a dual lattice homomorphism from
(B,∨,∧) to (B,∧,∨), and ¬ is the identity mapping on (B,⊕,⊗).



A Sequent Calculus for Bilattice-Based Logic 167

Let L1 = (L1,≤1) and L2 = (L2,≤2) be two lattices, let x1, x2 denote arbitrary
elements of the lattice L1, and let y1, y2 denote arbitrary elements of the lattice
L2. Let ∩1,∪1 denote the meet and join defined in the lattice L1, and let ∩2,∪2

denote the meet and join defined in the lattice L2.

Definition 2. Suppose L1 = (L1,≤1) and L2 = (L2,≤2) are complete lattices.
Form the set of points L1 × L2, and define the two orderings ≤t and ≤k on
L1 × L2 as follows.
(1) 〈x1, y1〉 ≤t 〈x2, y2〉 if and only if x1 ≤1 x2 and y2 ≤2 y1.
(2) 〈x1, y1〉 ≤k 〈x2, y2〉 if and only if x1 ≤1 x2 and y1 ≤2 y2.

Therefore, 〈x1, y1〉 ∧ 〈x2, y2〉 = 〈x1 ∩1 x2, y1 ∪2 y2〉, 〈x1, y1〉 ∨ 〈x2, y2〉 = 〈x1 ∪1

x2, y1 ∩2 y2〉, 〈x1, y1〉 ⊗ 〈x2, y2〉 = 〈x1 ∩1 x2, y1 ∩2 y2〉, and 〈x1, y1〉 ⊕ 〈x2, y2〉 =
〈x1 ∪1 x2, y1 ∪2 y2〉.

We denote the resulting structure by L1 × L2 = (L1 × L2,≤t,≤k) = (B,≤t,
≤k), where B denotes L1 × L2.

Infinite meet and join with respect to k- and t-orderings will be denoted by∏
,
∑

,
∧

,
∨

.
From the definition of a lattice, it follows that ⊕, ⊗, ∨ and ∧ are idempotent,

commutative, associative, and the absorption laws hold for ⊕ and ⊗, and ∨ and
∧. See, for example, [12] for more details.

The unary operation ¬, the complement with respect to the truth ordering,
is defined in L1 × L2 as follows: ¬〈x, y〉 = 〈y, x〉. This particular definition of
negation requires that L1 = L2, and so we make this assumption throughout.
There are some alternative definitions of negation in bilattices, [6,10], but we do
not use them here.

Proposition 1. [5,11] Suppose B is a distributive bilattice. Then there are dis-
tributive lattices L1 and L2 such that B is isomorphic to L1 × L2.

Therefore, we will consider only logic programs over distributive bilattices and
regard the underlying bilattice of any program as a product of two lattices.
Moreover, we always treat each bilattice we work with as isomorphic to some
finite subset of B = L1 × L2 = ([0, 1],≤) × ([0, 1],≤), where [0, 1] is the unit
interval of reals with the linear ordering defined on it. Elements of such a bilattice
are pairs: the first element of each pair denotes evidence for a fact, and the
second element denotes evidence against it. We assume that each bilattice we
work with has four extreme elements, 〈0, 0〉 (none), 〈0, 1〉 (false), 〈1, 0〉 (true)
and 〈1, 1〉 (both).

3 Bilattice-Based Annotated Logic

Now we are ready to introduce Bilattice-Based Annotated Logic. We define its
syntax, semantics, and sound and complete sequent calculus for it, see also [19].

We define the bilattice-based annotated language L to consist of individual
variables, individual constants, functions and predicate symbols together with



168 E. Komendantskaya

annotation variables, annotation constants and annotation functions over some
fixed bilattice.

Individual variables, constants, and functions are used to build terms, while
annotation variables, constants and functions are used to build annotation terms.
Typical annotation functions will be ⊕,⊗,∧,∨ taken from a given bilattice.

We allow several connectives to represent operations over a bilattice, and so
we allow five connectives and four quantifiers, as follows: ⊕,⊗,∧,∨,¬ Σ,Π, ∃, ∀.

We use the conventional definition of a first-order term and a first-order for-
mula. An annotated formula is defined inductively as follows: ifR is an n-ary pred-
icate symbol, t1, . . . , tn are terms, τ is an annotation term, thenR(t1, . . . , tn) : (τ)
is an annotated formula (called an annotated atom). If ψ, φ are annotated formu-
lae, then ψ� φ is an annotated formula, where � is one of {⊕,⊗,∧,∨}. If F1 and
F2 are formulae, and τ is an annotation term, then (F1�F2) : (τ) is an annotated
formula, where � is one of {⊕,⊗,∧,∨}. If φ is an annotated formula, then ¬φ,
Σφ,Πφ, ∃φ and ∀φ are annotated formulae. In order to reflect the nature of an-
notations taken from the bilattice, we will alternatively use notation (μ, ν) instead
of (τ) when discussing annotation terms.

Note that we use angled brackets 〈 〉 to denote elements of B and round
brackets ( ) to denote annotations of the language L.

Example 1. Consider a binary predicate connected, which describes the fact of
existence of an edge in a probabilistic graph. These graphs can be used to describe
the behaviour of internet connections, for example. Then connected(a, b) : (1

3 ,
2
3 )

will describe the fact that the probability of establishing a connection between
nodes a and b is equal to 1

3 , while probability of losing this connection is 2
3 . Then,

for example, connected(a, b) : (1
3 ,

2
3 ) ∧ (μ, ν) is also a formula which contains a

function ∧ and two free variables (μ, ν) in its annotation.

3.1 Interpretations

Let B denote a bilattice underlying the annotated language L; it will provide
the set of truth values for L.

Following the conventional definition of an interpretation (see [3], for exam-
ple), we fix a domain D, where constants and function symbols receive interpre-
tation. A variable assignment V is an assignment, to each variable in L, of an
element in the domain D. An interpretation of constants, variables, and func-
tion symbols in D will be called a pre-interpretation, we will denote it by | |. An
interpretation I for a (first-order) bilattice-based annotated language L consists
of a pre-interpretation together with a mapping |R|I : Dn −→ B for each n-ary
predicate symbol R in L.

One further piece of notation we need is as follows: for each element 〈α, β〉 of
B, we denote by χ〈α,β〉 : B −→ B the mapping defined by χ〈α,β〉(〈α′, β′〉) = 〈1, 0〉
if 〈α, β〉 ≤k 〈α′, β′〉 and χ〈α,β〉(〈α′, β′〉) = 〈0, 1〉 otherwise.

We will use the two functions I and χ to define interpretation I for annotated
atoms. Given an annotated atom A : (α′, β′) with constant annotation (α′, β′),
an interpretation I for a first-order formula A, and a value 〈α, β〉 from B assigned



A Sequent Calculus for Bilattice-Based Logic 169

to A, we use χ as follows: if the value 〈α, β〉 ≥k 〈α′, β′〉, then I(A : (α′, β′)) =
〈1, 0〉 , and I(A : (α′, β′)) = 〈0, 1〉 otherwise. If the annotated term τ attached
to an annotated atom A : τ contains variables μ, ν, we use existential quantifier
Σ when applying χ as follows: χτ (〈α, β〉) = 〈1, 0〉 if Σ(μ, ν)(τ ≥ 〈α, β〉). We will
assume this quantification when giving the next definition.

Definition 3. Let I be a (first-order) interpretation with domain D for a first
order annotated language L and let V be a variable assignment. Then an an-
notated formula F in L can be given an interpretation I(F ) (also denoted as
|F |I,V ) in B as follows.

– If F is an annotated atom R(t1, . . . , tn) : (μ, ν) with (μ, ν) being an
annotation term, then the value of |F |I,V is given by |F |I,V = χ〈μ,ν〉
(|R|I(|t1|, . . . , |tn|)).

– If F has the form (¬A) : (μ, ν), with A being some first-order atom and
(μ, ν) being an annotation term, then |(¬A) : (μ, ν)|I,V = |A : (ν, μ)|I,V .

– If F has the form ¬(A : (μ, ν)), with A being some first-order formula and
(μ, ν) being an annotation term, then |¬(A : (μ, ν))|I,V = ¬∗(|A : (μ, ν)|I,V ),
where the operation ¬∗ denotes the restriction of the bilattice operation ¬ to
the set of values {〈1, 0〉, 〈0, 1〉}.

– If F has the form (F1 ⊗ F2), where F1 and F2 are annotated atoms, then
|F1 ⊗ F2|I,V = |F1|I,V ⊗ |F2|I,V .

Note that on the left hand side of this equation, the symbol ⊗ denotes a
connective in L, and on the right hand side it denotes an operation of the
bilattice B.

– If an annotated formula has the form (A1 ⊗ A2) : (μ, ν), where A1, A2 are
first-order formulae and (μ, ν) being an annotation term, then |(A1 ⊗ A2) :
(μ, ν)|I,V = χ〈μ,ν〉(|A1|I,V ⊗ |A2|I,V ).

– If a formula has the form ΣxR(x) : (μ, ν), with (μ, ν) being an annotation
term, then

|ΣxR(x) : (μ, ν)|I,V = χ〈μ,ν〉

(
∑

d∈D

|R(d)|I,V

)
,

where
∑

is the infinite join with respect to≤k, |R(d)|I,V receives interpretation
with respect to I and V (x

d ), where V (x
d ) is V except that x is assigned d.

We omit the definitions of interpretations for the remaining connectives and
quantifiers, and the reader can easily complete Definition 3. We simply mention
here that the connectives⊕,⊗, ∧, ∨ and the quantifiersΣ,Π , ∃, ∀ are interpreted
by finite and infinite operations defined on bilattices as in Section 2.

In general, the analogs of the classical truth values true and false are repre-
sented by 〈1, 0〉 and 〈0, 1〉 - the greatest and least elements of the bilattice with
respect to ≤t. Furthermore, the definitions of satisfiable, unsatisfiable, valid and
non-valid formulae and of models are standard if the classical truth values true
and false in these definitions are replaced by 〈1, 0〉 and 〈0, 1〉.

The following properties of I are very important for the development of a
sequent calculus for BAL.



170 E. Komendantskaya

Proposition 2 (Properties of I). Let F, F1, . . . Fk be first-order formulae,
and fix a first-order interpretation I for them. Then any interpretation I built
upon I as in Definition 3 has the following properties:

1. If I(F : (α, β)) = 〈1, 0〉, then I(F : (α′, β′)) = 〈1, 0〉 for all 〈α′, β′〉 ≤k

〈α, β〉.
2. If I(F : (α, β)) = 〈0, 1〉, then I(F : (α′, β′)) = 〈0, 1〉, for all (α′, β′) such

that 〈α, β〉 ≤k 〈α′, β′〉.
3. I(F1 : (μ1, ν1)⊗ . . .⊗Fk : (μk, νk)) = 〈1, 0〉 ⇐⇒ I(F1 : (μ1, ν1)⊕ . . .⊕Fk :

(μk, νk)) = 〈1, 0〉 ⇐⇒ I(F1 : (μ1, ν1) ∧ . . . ∧ Fk : (μk, νk)) = 〈1, 0〉 ⇐⇒ I(Fi :
(μi, νi)) = 〈1, 0〉, for each i ∈ {1, . . . , k}.

4. I(F1 : (μ1, ν1)⊗ . . .⊗Fk : (μk, νk)) = 〈0, 1〉 ⇐⇒ I(F1 : (μ1, ν1)⊕ . . .⊕Fk :
(μk, νk)) = 〈0, 1〉 ⇐⇒ I(F1 : (μ1, ν1) ∨ . . . ∨ Fk : (μk, νk)) = 〈0, 1〉 ⇐⇒ I(Fi :
(μi, νi)) = 〈0, 1〉, for each i ∈ {1, . . . , k}.

5. If I(F1 : (μ1, ν1) � . . . � Fk : (μk, νk)) = 〈1, 0〉, then I((F1 � . . . � Fk) :
((μ1, ν1)� . . .�(μk, νk))) = 〈1, 0〉, where � is any one of the connectives ⊗,⊕,∧.

6. If I(F1 : (μ1, ν1) � . . . � Fk : (μk, νk)) = 〈0, 1〉, then I((F1 � . . . � Fk) :
((μ1, ν1)� . . .�(μk, νk))) = 〈0, 1〉, where � is any one of the connectives ⊗,⊕,∨.

7. If I(F1 : (μ, ν)) = 〈1, 0〉, then I((F1⊕F2) : (μ, ν)) = 〈1, 0〉, for any formula
F2.

8. If I(F1 : (μ, ν)) = 〈0, 1〉, then I((F1⊗F2) : (μ, ν)) = 〈0, 1〉, for any formula
F2.

9. I(F : (μ, ν)) = 〈1, 0〉 ⇐⇒ I(¬F : (ν, μ)) = 〈1, 0〉.
10. I(F : (μ, ν)) = 〈0, 1〉 ⇐⇒ I(¬F : (ν, μ)) = 〈0, 1〉.
11. For every formula F , I(F : (0, 0)) = 〈1, 0〉.

The proof of this proposition uses the definitions of I and bilattice operations.
Not all the statements in the above proposition are immediate. For example,
items 3 − 6 exhibit some non-trivial properties of the bilattice interpretation.
The proposition will be useful in the next subsection, where we introduce a
sound and complete sequent calculus for BAL.

3.2 Sequent Calculus for Annotated Logics

In this section we will use properties of bilattices and interpretation I to define
a sequent calculus for Bilattice-Based Annotated Logic (BAL).

We denote annotated formulae by ϕ, ψ and φ, and conventional first-order
formulae by F1, F2. The symbols Ω and Γ will denote arbitrary finite sequences
of annotated formulae.

We allow the following axioms ϕ �→ ϕ; �→ F : (0, 0) and rules:
1. Introducing ¬:

Ω �→ Γ, ϕ

¬ϕ,Ω �→ Γ,
¬L ,

ϕ,Ω �→ Γ

Ω �→ Γ,¬ϕ ¬R.

2. Introducing ∨:

ψ,Ω �→ Γ ; φ,Ω �→ Γ

φ ∨ ψ,Ω �→ Γ
∨-L,

Ω �→ Γ, ϕ

Ω �→ Γ, ϕ ∨ ψ or
Ω �→ Γ, ψ

Ω �→ Γ, ϕ ∨ ψ ∨-R.



A Sequent Calculus for Bilattice-Based Logic 171

3. Introducing ∧:

ψ,Ω �→ Γ

ψ ∧ φ,Ω �→ Γ
or

φ,Ω �→ Γ

ψ ∧ φ,Ω �→ Γ
∧-L,

Ω �→ Γ, ϕ ; Ω �→ Γ, ψ

Ω �→ Γ, ϕ ∧ ψ ∧-R.

4. Introducing ⊕:

ψ,Ω �→ Γ ; φ,Ω �→ Γ

ψ ⊕ φ,Ω �→ Γ
⊕-L,

Ω �→ Γ, ϕ ; Ω �→ Γ, ψ

Ω �→ Γ, ϕ⊕ ψ ⊕-R.

The rule ⊕-L is identical to ∨-L; but the rule ⊕-R is identical to ∧-R. Cf.
Definition 2 and Proposition 2.(3-4).

5. Introducing ⊗:

ψ,Ω �→ Γ ; ϕ,Ω �→ Γ

ψ ⊗ ϕ,Ω �→ Γ
⊗-L,

Ω �→ Γ, ϕ ; Ω �→ Γ, ψ

Ω �→ Γ, ϕ⊗ ψ ⊗-R.

The rule ⊗-R is identical to ∧-R; but ⊗-L is identical to ∨-L. Cf. Definition 2
and Proposition 2.(3-4).

Similarly, because quantifiers Π,Σ are modelled by infinite analogues of ⊗
and ⊕, rules for introducing Π are identical to the rules for Σ:

6. Introducing © = Σ,Π in the antecedent (Σ-L/ Π-L):

Syi
xi
ϕ,Ω, �→ Γ

©xiϕ,Ω �→ Γ
, yi /∈ FREE(Ω ∪ {Σxiϕ, Γ}).

7. Introducing © = Σ,Π in the consequent (Σ-R/ Π-R):

Ω �→ Γ, Syi
xi
ϕ

Ω �→ Γ,©xiϕ
, yi /∈ FREE(Ω ∪ {Σxiϕ, Γ}).

10. Introducing ∃ in the antecedent (∃-L):

Syi
xi
ϕ,Ω �→ Γ

∃xiϕ,Ω �→ Γ
, yi /∈ FREE(Ω ∪ {∃xiϕ, Γ}).

11. Introducing ∃ in the consequent (∃-R):

Ω �→ Γ, St
xi
ϕ

Ω �→ Γ, ∃xiϕ
.

The rules for quantifier ∀ are given dually to those for ∃, as in conventional
classical sequent calculi.

The next block of rules will give an account of annotations:
12. Increasing values in annotations (IA), (cf. Proposition 2.(1)):

Ω �→ Γ, F : (μ, ν)
Ω �→ Γ, F : (μ′, ν′)

, for all (μ′, ν′) ≤k (μ, ν).

13. Descending values in annotations (DA) (cf. Proposition 2.(2)):

F : (μ, ν), Ω �→ Γ

F : (μ′, ν′), Ω �→ Γ
, for all (μ, ν) ≤k (μ′, ν′).



172 E. Komendantskaya

14. Introducing ⊕ inside annotated formulae in the antecedent (I⊕I -L) (cf.
Proposition 2.(7)):

F1 : (μ, ν), Ω �→ Γ ; F2 : (μ, ν), Ω �→ Γ

(F1 ⊕ F2) : (μ, ν), Ω �→ Γ
.

15. Introducing ⊕ inside annotated formulae in the consequent (⊕I-R) (cf.
Proposition 2.(7)):

Ω �→ Γ, F1 : (μ, ν)
Ω �→ Γ, (F1 ⊕ F2) : (μ, ν)

,
Ω �→ Γ, F2 : (μ, ν)

Ω �→ Γ, (F1 ⊕ F2) : (μ, ν)
.

16. Introducing ⊗ inside annotated formulae in the antecedent (⊗I-L) (cf.
Proposition 2.(8)):

F1 : (μ, ν), Ω �→ Γ

(F1 ⊗ F2) : (μ, ν), Ω �→ Γ
,

F2 : (μ, ν), Ω �→ Γ

(F1 ⊗ F2) : (μ, ν), Ω �→ Γ
.

17. Introducing ⊗ inside annotated formulae in the consequent (I ⊗ I-R) (cf.
Proposition 2.(8)):

Ω �→ Γ, F1 : (μ, ν); Ω �→ Γ, F2 : (μ, ν)
Ω �→ Γ, (F1 ⊗ F2) : (μ, ν)

.

18. Combining annotations in the antecedent (CAL) (cf. Proposition 2.(6)):

F1 : (μ1, ν1)� F2 : (μ2, ν2), Ω �→ Γ

(F1 � F2) : ((μ1, ν1)� (μ2, ν2)), Ω �→ Γ
, where � is either ⊕, ⊗ or ∨.

19. Combining annotations in the consequent (CAR) (cf. Proposition 2.(5),
see also Example 2):

Ω �→ Γ, F1 : (μ1, ν1)� F2 : (μ2, ν2)
Ω �→ Γ, (F1 � F2) : ((μ1, ν1)� (μ2, ν2))

, where � is either ⊕, ⊗ or ∧.

20. Introducing ¬ inside annotations (cf. Proposition 2.(11)):

F1 : (ν, μ), Ω �→ Γ

(¬F1) : (μ, ν), Ω �→ Γ
¬I-L ,

Ω, �→ Γ, F1 : (ν, μ)
Ω �→ Γ, (¬F1) : (μ, ν)

¬I-R .

We allow the structural rules interchange, contraction and weakening. These
structural rules can be defined to be either primitive or admissible, in style of
G3. The latter option seems to be more appropriate for automated reasoning,
but we shall not discuss this issue here.

All the annotation functions ⊗, ⊕, ∧ and ∨ are defined in B, and one is
allowed to operate with them accordingly. That is, for example, one can think of
F : ((1

3 ,
2
3 ) ⊗ (2

3 ,
1
3 )) as of F : (1

3 ,
1
3 ). Also, because in both lattices constituting

a bilattice, operations ⊕, ⊗, ∧ and ∨ are idempotent, commutative, associative,



A Sequent Calculus for Bilattice-Based Logic 173

and distributive, one can treat equally F : (μ, ν) and F : ((μ, ν) � (μ, ν)) (� =
⊕,⊗,∧,∨), for example, or write F : ((μ1, ν1) ∨ ((μ2, ν2) ∧ (μ3, ν3))) instead of
F : (((μ1, ν1)∨(μ2, ν2))∧((μ1, ν1)∨(μ3, ν3))), and so on. All these properties can
be stated directly as sequent rules, or, as we do here, just assumed throughout.
In fact, the latter way seems to be more natural: ⊗,⊕,∧ and ∨ appearing in
annotations are not connectives, but they are annotation functions. And, in the
same way as we ignore properties of functions appearing in individual terms
when defining conventional sequent rules, we may wish to ignore properties of
annotation functions when defining sequent calculus for BAL.

In general, all the classical tautologies reformulated with annotated formulae
are provable in this calculus. But additionally, we can prove theorems concerning
properties of annotations.

Example 2. The formula (F1∧F2) : (0, 1) is a logical consequence of F1 : (1, 0)∧
F2 : (0, 1). One can use the rule CAR and the fact that annotation terms (1, 0)∧
(0, 1) and (0, 1) are equal to prove this sequentially.

Cut elimination theorem can be proven for BAL, if cut rule is defined. But we
will not discuss this issue here.

Theorem 1 (Soundness). For any annotated formula ϕ, if ψ � ϕ then ψ |= ϕ.

Proof. Proof follows along the lines of conventional proof of soundness for clas-
sical first-order sequent calculus. We additionally make use of Proposition 2.

The calculus for BAL is also complete. But we avoid to state Completeness until
the last section, when we obtain it as a corollary of the completeness theorem
for many-sorted logic.

4 Many-Sorted Representation of BAL

The sequent calculus for BAL introduced in the previous section reflects rigor-
ously the semantic properties of the logic. But it may be criticised for having a
difficult rule representation and allowing semantics to interfere with its syntax.
In the second part of this paper we will show how this calculus can equivalently
be transformed into the elegant conventional sequent calculus for many-sorted
logic, introduced in [4]. The latter is proven to be sound and complete, see, for
example [4,23].

In this section we draw inspiration from the work of Manzano [23] who showed
how second-order and dynamic logic can be translated into fragments of many-
sorted logic MSL. We define the syntax and semantics of its fragment MSL∗ and
use it for translation of BAL.

We follow the notation of Manzano when working with many-sorted semantics.
We hope that the uniformity of our notation with that of [23] will make it
easier to consider our results in one context with the similar results of Manzano
concerning second-order and dynamic logic.

4.1 Many-Sorted Language MSL∗ of Signature Σ∗

We start by defining the many-sorted language MSL∗ of signature Σ∗.



174 E. Komendantskaya

Definition 4. We define a signature Σ∗ = 〈SORT,RANK〉, where

SORT(Σ∗) = SORT = {0, 1, 2, < 0,

n−1︷ ︸︸ ︷
1, . . . , 1, 2 >} (representing boolean, indi-

vidual, bilattice universes and a universe of n-ary relations on individuals and
bilattice elements); and RANK is described in Df. 5.

We will continue defining RANK in the next Definition, and will pause for a
while to explain the significance of the particular choice of SORT for MSL∗. The

sorts 2 and < 0,

n−1︷ ︸︸ ︷
1, . . . , 1, 2 > are specific for MSL∗, if we compare them with

the general definition of a many-sorted signature in [23]. The sort 2 represents

universe of bilattice elements. The sort < 0,

n−1︷ ︸︸ ︷
1, . . . , 1, 2 > will be used when we

give a formal account of the interpretation function I for BAL, which will be
formalised by relations Ik of different arities in MSL∗. As in second-order logic,
the relations interpreted in this universe will be quantified. Moreover, they will
have both individual and annotation terms as arguments. As any other relations,
they can be evaluated as true, if some elements in the underlying structure satisfy
this relation, or false otherwise.

We define Sω(SORT) to be the set of all finite sequences of elements of SORT.
RANK is a function whose values are in Sω(SORT).
We denote Dom(RANK) as OPER.SYM(Σ∗) = OPER.SYM and call its

elements operation symbols. We allow the following operation symbols in the
language:

– ¬,∨,∧ - the classical connectives;
– fn

1 , f
n
2 , . . ., for any n ∈ N, - function symbols of different arities over indi-

vidual terms;
– ϑn

1 , ϑ
n
2 , . . ., for any n ∈ N, - bilattice function symbols of different arities;

– Rn
1 , R

n
2 , . . ., for any n ∈ N, - predicates over individual terms;

– ≤k - bilattice binary relation;
– In

1 , I
n
2 , . . . ,, for any n ∈ N, - relation symbols of different arities;

– ε - membership relation.

Then RANK is defined for each of them as follows.

Definition 5 (Df. 4 continued).
For ¬,∨,∧ ∈ OPER.SYM, RANK(∨) = RANK(∧) = 〈0, 0, 0〉,
RANK(¬) = 〈0, 0〉.

We define RANK(fn(x1, . . . , xn)) = 〈1,
n︷ ︸︸ ︷

1, . . . , 1〉, where fn is n-ary function
over terms of sort 1; and

RANK(ϑn((μ1, ν1), . . . , (μn, νn))) = 〈2,
n︷ ︸︸ ︷

2, . . . , 2〉, where ϑn is n-ary function
over terms of sort 2;

RANK(Rn(x1, . . . , xn)) = 〈0,
n︷ ︸︸ ︷

1, . . . , 1〉, where Rn is n-ary relation over individ-
ual terms of sort 1;



A Sequent Calculus for Bilattice-Based Logic 175

For the binary bilattice relation ≤k, RANK(≤k) = 〈0, 2, 2〉.

RANK(In((x1, . . . , xn), (μ, ν))) = 〈0,
n︷ ︸︸ ︷

1, . . . , 1, 2〉, where In is an n-ary relation
over terms of sorts 1 and 2.
And, finally, for membership relations εn,

RANK(εn) = 〈0,
n︷ ︸︸ ︷

1, . . . , 1, 2 < 0,

n︷ ︸︸ ︷
1, . . . , 1, 2 >〉.

Note that each annotation term of the form (μi, νi) is interpreted by one element
of a bilattice, and thus each annotation term has a single sort 2, and not (2, 2)
as one might expect.

Definition 6. We define a many-sorted structure

S = 〈A1, A2, A
n
3 , f

A1 , fA2〉, (for each n ∈ N),

where A1, A2 and An
3 are universes for variables of sorts < 1 >, < 2 >, <

0,

n−1︷ ︸︸ ︷
1, . . . , 1, 2 >; fA1 ⊆ Ak

1 and fA2 ⊆ Ak
2 .

A many-sorted language L consists of symbols from OPER.SYM, quantifier ∃
and the set of variables V = V i : i ∈ SORT− {0}. That is, the superscript of a
variable denotes its sort.

Definition 7. Expressions of the language are defined inductively as follows:

1. Each variable of a sort i is an expression of the same type.
2. If fm ∈ OPER.SYM and ε1, . . . , εm are expressions of the single type 1, then
fm(ε1, . . . , εm) is an expression of type 1.
If ϑm ∈ OPER.SYM and ε1, . . . , εm are expressions of type 2, then
ϑ(ε1, . . . , εm) is an expression of type 2.
If Rm ∈ OPER.SYM , then for all the expressions ε of the single type 1, the
string R(ε1, . . . , εm) is an expression of type 0.
If ≤k∈ OPER.SYM, then for all expressions ε1, ε2 of the single type 2, the
string ε1 ≤k ε2 is an expression of type 0.
If Im+1 ∈ OPER.SYM, ε1, . . . , εm are expressions of the single type 1 and ε is
an expression of the single type 2, then Im+1((ε1, . . . , εm), ε) is an expression
of type 0.

3. If ε is an expression of type 0 and xi is a variable of sort i, then ∃xiε is an
expression of type 0 as well.

No other string is an expression.

Terms are expressions of single non-zero type i = 1, 2. Formulae are expressions
of type 0.

Note that in our setting, the relations I of different arities can be viewed
as variables and can be quantified. This is why, we handle these relations uni-
formly with the way how [23] treated second order relations and formulae within



176 E. Komendantskaya

many-sorted language. We require εt1, . . . , tn, μ, νIn, with ε being the member-
ship relation, to replace In((t1, . . . , tn), (μ, ν)); and we define expressions of the
former type to be formulae, but expressions of the latter type - not, and amend
Definition 7 accordingly.

We define ⊃ and ∀ using ¬, ∨ and ∃ in the usual way.

Interpretation. We define the interpretation function I for the many-sorted
language, following closely [23], but making a substantial adaptation to the par-
ticular language MSL∗ we have defined.

We define Assignment

M :
⋃

Vi
i∈SORT−{0}

→ Ai
i∈SORT−{0}

,

in such a way that M [Vi] ⊆ Ai.

Definition 8. An interpretation I over a structure S is a pair 〈S,M〉, where
M is an assignment on S. In particular, for i ∈ SORT,

1. I(xi) = M(xi),
2. I(f(ε1, . . . , εn)) = fS(I(ε1), . . . , I(εn)).

As particular cases of item 2, we have:
I(ai) = (ai)S ;

3. I(f(t1, . . . , tn)) = (f)S(I(t1), . . . , I(tn));
4. I(ϑ(τ1, . . . , τn)) = (ϑ)S(I(τ1), . . . , I(τn));

I(R(t1, . . . , tn)) = (R)S(I(t1), . . . , I(tn));
I((t1, . . . , tn), (τ)εI) = εS〈(I(t1), . . . , I(tn), I(τ)), ((I)S )〉;
I(¬ψ) = ¬S(I(ψ));
I(ψ ∨ φ) = (I(ψ)) ∨S (I(φ)); I(ψ ∧ φ) = (I(ψ)) ∧S (I(φ)).

5. I(∃xiφ) = True if and only if {xi ∈ Ai|Ixj

xi (φ) = True} �= ∅ (where Ixj

xi =
〈S,Mxj

xi 〉 and Mxj

xi = (M − {< xi,M(xi) >}) ∪ {< xi, xj >}).

Note that the interpretation of MSL∗ is two-valued: atomic formulae are inter-
preted as true if the relations they formalise are satisfied in the structure S, and
they are interpreted false otherwise. Complex formulae are interpreted respective
to this interpretation of atomic formulae.

Now, when the many-sorted language MSL∗, its underlying structure, and the
interpretation function I are defined, we will show that BAL can be translated
into MSL∗, and so we give syntactical and semantical translation for BAL.

4.2 Translation of BAL into MSL∗

In the subsequent sections we lighten the notation, and instead of using upper in-
dices to denote sorts of variables, will use symbols x and y with lower indices to
denote variables of sort 1, and μ, ν with lower indices to denote variables of sort 2.

Syntactical Translation. The syntactical translation from BAL to MSL∗

leaves all individual terms and atomic non-annotated formulae as they are,



A Sequent Calculus for Bilattice-Based Logic 177

and gives the following translation to the atomic annotated formulae:
TRANSLBAL �→MSL∗(R(x) : (μ, ν)) =
∀I∃(μ′, ν′)((R(x) ∧ (x, (μ′, ν′))εI) ∧ ((μ, ν) ≤k (μ′, ν′))).

We will abbreviate TRANSLBAL �→MSL∗ as TRANSL∗.

TRANSL∗(¬(R(x) : (μ, ν))) = TRANSL∗(R(x) : (ν, μ)).

Let ψ1 and ψ2 be annotated atomic formulae. Then

TRANSL∗(¬ψ1) = ¬TRANSL∗(ψ1);

TRANSL∗(ψ1 ∧ ψ2) = TRANSL∗(ψ1) ∧TRANSL∗(ψ2);

TRANSL∗(ψ1 ∨ ψ2) = TRANSL∗(ψ1) ∨TRANSL∗(ψ2);

Because our final goal is to translate sequent calculus for BAL into the
conventional sequent calculus for many-sorted logics, the translation function
TRANSL∗ is sensitive to the position of a translated formula in a sequent:

TRANSL∗(ψ1 ⊗ ψ2) = TRANSL∗(ψ1) ∧ TRANSL∗(ψ2),

if ψ1 ⊗ ψ2 appears in the consequent of a sequent; and

TRANSL∗(ψ1 ⊗ ψ2) = TRANSL∗(ψ1) ∨ TRANSL∗(ψ2),

if ψ1 ⊗ ψ2 appears in the consequent of a sequent.

TRANSL∗(ψ1 ⊕ ψ2) = TRANSL∗(ψ1) ∧ TRANSL∗(ψ2),

if ψ1 ⊗ ψ2 appears in the antecedent of a sequent; and

TRANSL∗(ψ1 ⊕ ψ2) = TRANSL∗(ψ1) ∨ TRANSL∗(ψ2),

if ψ1 ⊗ ψ2 appears in the antecedent of a sequent.
For complex formulae under a single annotation we introduce the following

translation

TRANSL∗(R1(x)�R2(y) : (α, β)) = ∀I[∃(μ1, ν1), (μ2, ν2)(R1(x) ∧R2(y)
∧(x, (μ1, ν1)εI) ∧ (y, (μ2, ν2)εI) ∧ ((α, β) ≤k ((μ1, ν1) � (μ2, ν2))))], for � =
⊕,⊗,∨,∧.

Finally, we give a translation for the existential quantifiers:

TRANSL∗(∃xψ) = ∃xTRANSL∗(ψ).

TRANSL∗(Σxψ) = ∃xTRANSL∗(ψ), ifΣxψ is in the antecedent of a sequent; and
TRANSL∗(Σxψ) = ∀xTRANSL∗(ψ), if Σxψ is in the consequent of a sequent.

Example 3. The ground formula (F1 ∧F2) : (0, 1) from Example 2 can be trans-
lated into ∀I[∃(μ1, ν1), (μ2, ν2)(F1 ∧ F2 ∧ ((μ1, ν1)εI) ∧ ((μ2, ν2)εI) ∧ ((0, 1) ≤k

((μ1, ν1) ∧ (μ2, ν2))))].

Semantical translation. We are ready now to compare model properties of
BAL and MSL∗.



178 E. Komendantskaya

Lemma 1. Let F be an annotated formula of BAL. Let Σ∗ and S be a signature
respectively a structure of MSL∗, with I being a many-sorted interpretation in
S. And let | |I be an interpretation for BAL as defined in Section 3. Then the
following holds:

|F |I = 〈1, 0〉 in BAL ⇐⇒ I(TRANSL∗(F )) = True in MSL∗ .

Proof. The proof proceeds by two routine induction arguments on complexity of
formulae in BAL and MSL∗; we use definitions of I in BAL and interpretation
I over the many-sorted structure S.

Corollary 1. |= F in BAL if and only if |= TRANSL∗(F ) in MSL∗.

We have given the syntactical and semantical translation of BAL into MSL∗. It
remains to show their deductive equivalence.

4.3 Sequent Calculus for MSL∗

We define a theory which will be proven to be deductively equivalent to BAL.
In fact, sequent calculus for MSL∗ is just a conventional many-sorted sequent
calculus MSL of [4,23], but with several simple rules added in order to reflect
particular properties of bilattice structures1:

We add �→ (μ, ν) ≥k (0, 0) to the set of axioms.
The rules we add to MSL are:

1. Transitivity of ≤k in the consequent:

Ω �→ Γ, (μ1, ν1) ≤k (μ2, ν2), (μ2, ν2) ≤k (μ3, ν3)
Ω �→ Γ, (μ1, ν1) ≤k (μ3, ν3)

Tr-R.

2. Transitivity of ≤k in the antecedent:

(μ2, ν2) ≤k (μ1, ν1), (μ3, ν3) ≤k (μ2, ν2), Ω �→ Γ

(μ3, ν3) ≤k (μ1, ν1), Ω �→ Γ
TR-L.

3. Introduction of ⊕ in the antecedent:

(μ, ν) ≤k (μ1, ν1), Ω �→ Γ ; (μ, ν) ≤k (μ2, ν2), Ω �→ Γ

(μ, ν) ≤ ((μ1, ν1)⊕ (μ2, ν2)), Ω �→ Γ
⊕-L.

4. Introduction of ⊕ in the consequent:

Ω �→ Γ, (μ, ν) ≤k (μ1, ν1)
Ω �→ Γ, (μ, ν) ≤k ((μ1, ν1)⊕ (μ2, ν2))

⊕-R.

5. Introduction of ⊗ in the antecedent:

(μ1, ν1) ≤k (μ, ν), Ω �→ Γ

((μ1, ν1)⊗ (μ2, ν2)) ≤k (μ, ν), Ω �→ Γ
⊗-L.

1 We use a multi succedent reformulation of a single succedent calculus of [4,23].



A Sequent Calculus for Bilattice-Based Logic 179

6. Introduction of ⊕ in the consequent:

Ω �→ Γ, (μ, ν) ≤k (μ1, ν1); Ω �→ Γ, (μ, ν) ≤k (μ2, ν2)
Ω �→ Γ, (μ, ν) ≤k ((μ1, ν1)⊗ (μ2, ν2))

, ⊗-R.

7. Introduction of ⊗, ⊕, ∨ in the antecedent:

(μ1, ν1) ≤k (μ′, ν′), (μ2, ν2) ≤k (μ′′, ν′′), Ω �→ Γ

((μ1, μ2)� (μ2, ν2)) ≤k ((μ′, ν′)� (μ′′, ν′′)), Ω �→ Γ
�-L,

where � is one of ⊗, ⊕, ∨.
8. Introduction of ⊗, ⊕, ∧ in the consequent:

Ω �→ Γ, (μ1, ν1) ≤k (μ′, ν′), (μ2, ν2) ≤k (μ′′, ν′′)
Ω �→ Γ, ((μ1, μ2)� (μ2, ν2)) ≤k ((μ′, ν′)� (μ′′, ν′′))

�-R,

where � is one of ⊗, ⊕, ∧.

All the properties of bilattice operations we assumed when working with sequent
calculus for BAL are assumed here too. For example, (1

3 ,
2
3 ) ⊗ (2

3 ,
1
3 ) can be

substituted by (1
3 ,

1
3 ) throughout the proof. This includes all the lattice axioms

and distributivity.

Example 4. A many-sorted version of Example 2 can be proven using the sequent
rules of MSL and the rule 8 above. That is, we can prove that∀I[∃(μ1, ν1), (μ2, ν2)
(F1 ∧ F2 ∧ ((μ1, ν1)εI) ∧ ((μ2, ν2)εI) ∧ ((0, 1) ≤k ((μ1, ν1) ∧ (μ2, ν2))))] follows
from [∀I∃(μ1, ν1)(F1 ∧ ((μ1, ν1)εI)∧ ((1, 0) ≤k (μ1, ν1))] ∧ [∀I∃(μ2, ν2)(F2 ∧
((μ2, ν2)εI) ∧ ((0, 1) ≤k (μ2, ν2))].

Now we can prove that BAL and MSL∗ are deductively equivalent.

Theorem 2. For any annotated formula ϕ the following holds:

�BAL ϕ iff �MSL∗ TRANSL∗(ϕ).

Proof. The proof that �MSL∗ TRANSL∗(ϕ) implies �BAL ϕ is trivial. The “if”
part of the proof proceeds by considering translations of axioms of BAL into
proofs in MSL∗, and rules for BAL into proofs in MSL∗. Namely, for each rule
in BAL, we translate the lower sequent of this rule into MSL∗, and then show
how the translation of the upper sequent(s) of the BAL rule can be derived
in MSL∗. For example, we take the rule DA from the sequent calculus for
BAL. We fix F from the rule to be R(x). The lower sequent of this rule can
be translated into ∀I∃(μ′′, ν′′)(R(x) ∧ I(x, (μ′′, ν′′)) ∧ (μ′, ν′) ≤k (μ′′, ν′′), Ω �→
ϕ. We also assume that ((μ, ν) ≤k (μ′, ν′)) is added to the right hand side
of each sequent: this is needed because the condition ((μ, ν) ≤k (μ′, ν′)) is
attached to the rule DA in BAL. Being put into antecedent of a lower se-
quent, this translated formula will receive a derivation from the three upper
sequents: Ω,R(x) �→ ϕ; (x, (μ′′, ν′′)εI), Ω �→ ϕ; and (μ, ν) ≤k (μ′′, ν′′), Ω �→
ϕ. To obtain this, one would need to apply, one after another, MSL∗ rules
∀-L, ∃-L, ∧-L, and Tr-L. The three upper sequents will also give a proof for



180 E. Komendantskaya

∀I∃(μ′′, ν′′)((R(x)∧I(x, (μ′′, ν′′))∧(μ, ν) ≤k (μ′′, ν′′), Ω �→ ϕ, that is, the trans-
lation of the upper sequent of the DA rule R(x) : (μ, ν), Ω �→ ϕ. We consider
similarly all the rules in BAL.

We are ready to state completeness of the sequent calculus for BAL as a corollary
from the Soundness and Completeness Theorem for MSL [23].

Corollary 2. For every formula ϕ in BAL, if |=BAL ϕ, then �BAL ϕ.

Proof. Follows from Corollary 1, Theorem 2, and Soundness and Completeness
Theorem for MSL, the latter theorem is proven in [23].

The results we have described in this section can be obtained, with minor mod-
ifications, for most of lattice and bilattice based annotated languages, such as
[13,15,16,22,24,25].

The many-sorted logic MSL∗ we defined here is in fact just a fragment of a
very general many-sorted logic MSL, [23]. It is curious that the structure of MSL∗

is similar to the structure of the fragment of MSL which gave a translation for
a second-order logic in [23]. This shows that annotated first-order many-valued
logics can be equivalently represented by conventional second-order logic with
sorts.

Furthermore, the way of introducing higher-order relations I in MSL∗ is sim-
ilar to the way how [23] introduced first-order relations when translating propo-
sitional dynamic logic into many-sorted logic. It is likely that a many-sorted
representation of a multimodal logic of [2], for example, will bring into the light
a close connection between annotated many-valued and multimodal logics.

5 Conclusions and Further Work

We have built a sequent calculus for a very general annotated logic BAL. We
used this generality to show, using the example of BAL, that annotated many-
valued logics can be syntactically, semantically, and deductively translated into
conventional many-sorted logic in the style of Manzano [23]. The resulting many-
sorted sequent calculus has a simpler and clearer rule representation and works
within conventional many-sorted language with no semantical annotations, and
hence in the future may yield some conventional structural (e.g., categorical)
analysis.

The uniform framework of MSL allowed us to compare properties of BAL with
other non-classical logics (second order, dynamic) which have been translated
into many-sorted logics already. In the future, it may be fruitful to find a many-
sorted representation of a multimodal logic of [2] and show its relations with
many-valued annotated logics. This would link nicely modal and many-valued
logics.

Some work has been done on practical implementation of many-sorted transla-
tion to Bilattice-based Annotated Logic Programs (BAPs), see [17]. The transla-
tion made in [17] helped to simplify certain resolution rules for BAL. A rigorous



A Sequent Calculus for Bilattice-Based Logic 181

analysis of efficiency of BAPs comparing with their many-sorted analogues is to
be done in the future.

The further work may include the similar analysis of other many-valued an-
notated logics, such as logics of [7,13,15,16,21,22,24,25], and some other lattice
or bilattice based logics. This may lead to establishing a nice uniform framework
for analysing different annotated lattice and bilattice based logics, their model
and deductive properties.

References

1. Baaz, M., Fremuller, C.G., Sazler, G.: Automated deduction for many-valued logics.
In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2,
pp. 1355–1402. Elsevier, Amsterdam (2001)

2. Baldoni, M.: Normal Multimodal Logics: Automatic Deduction and Logic Pro-
gramming extension. PhD thesis, Torino, Italy (2003)

3. Church, A.: Introduction to Mathematical Logic. Princeton (1944)

4. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, Berlin
(1984)

5. Fitting, M.: Bilattices in logic programming. In: Epstein, G. (ed.) The twentieth In-
ternational Symposium on Multiple-Valued Logic, pp. 238–246. IEEE, Washington
(1990)

6. Fitting, M.: Bilattices and the semantics of logic programming. Journal of logic
programming 11, 91–116 (1991)

7. Fitting, M.: Many-valued modal logics. Fundamenta informaticae 15, 234–235
(1992)

8. Fitting, M.: Kleene’s three-valued logics and their children. Fundamenta informat-
icae 20, 113–131 (1994)

9. Fitting, M.: Tableaus for many-valued modal logic. Studia Logica 55, 63–87 (1995)

10. Fitting, M.: Bilattices are nice things. Self-Reference, pp. 53–77 (2006)

11. Ginsberg, M.L.: Multivalued logics: a uniform approach to reasoning in artificial
intelligence. Computational Intelligence 4, 265–316 (1988)

12. Grätzer, G.: General Lattice Theory. Birkauser Verlag, Basel, Switzerland (1978)

13. Hähnle, R.: Commodious axiomatizations of quantifiers in multiple-valued logic.
Studia Logica 61(1), 101–121 (1998)

14. Hähnle, R., Escalado-Imaz, G.: Deduction in many-valued logics: a survey. Math-
ware and soft computing IV(2), 69–97 (1997)

15. Kifer, M., Lozinskii, E.L.: RI: A logic for reasoning with inconsistency. In: Pro-
ceedings of the 4th IEEE Symposium on Logic in Computer Science (LICS), pp.
253–262. IEEE Computer Press, Asilomar (1989)

16. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming
and its applications. Journal of logic programming 12, 335–367 (1991)

17. Komendantskaya, E.: A many-sorted semantics for many-valued annotated logic
programs. In: Proceedings of the Fourth Irish Conference on the Mathematical
Foundations of Computer Science and Information Technology (MFCSIT), pp.
225–229, Cork, Ireland, (August 1–5, 2006)

18. Komendantskaya, E., Power, J.: Fibrational semantics for many-valued logic pro-
grams, Submitted (2007)



182 E. Komendantskaya

19. Komendantskaya, E., Seda, A.K., Komendantsky, V.: On approximation of the
semantic operators determined by bilattice-based logic programs. In: Proceedings
of the Seventh International Workshop on First-Order Theorem Proving (FTP’05),
pp. 112–130, Koblenz, Germany, (September 15–17, 2005)

20. Lu, J.J.: Logic programming with signs and annotations. Journal of Logic and
Computation 6(6), 755–778 (1996)

21. Lu, J.J., Murray, N.V., Rosenthal, E.: A framework for automated reasoning in
multiple-valued logics. Journal of Automated Reasoning 21(1), 39–67 (1998)

22. Lu, J.J., Murray, N.V., Rosenthal, E.: Deduction and search strategies for regular
multiple-valued logics. Journal of Multiple-valued logic and soft computing 11,
375–406 (2005)

23. Manzano, M.: Introduction to many-sorted logic. In: Meinke, K., Tucker, J.V. (eds.)
Many-Sorted logic and its Applications, pp. 3–88. John Wiley and Sons, UK (1993)

24. Salzer, G.: MUltlog 1.0: Towards an expert system for many-valued logics. In:
McRobbie, M.A., Slaney, J.K. (eds.) Automated Deduction (CADE’96). LNCS,
vol. 1104, pp. 226–230. Springer, Heidelberg (1996)

25. Sazler, G.: Optimal axiomatizations of finitely-valued logics. Information and Com-
putation 162(1–2), 185–205 (2000)



Updating Reduced Implicate Tries

Neil V. Murray1 and Erik Rosenthal2

1 Department of Computer Science, State University of New York, Albany, NY 12222, USA
nvm@cs.albany.edu

2 Department of Mathematics, University of New Haven, West Haven, CT 06516, USA
erosenthal@newhaven.edu

Abstract. The reduced implicate trie, introduced in [11], is a data structure that
may be used as a target language for knowledge compilation. It has the property
that, even when large, it guarantees fast response to queries. Specifically, a query
can be processed in time linear in the size of the query regardless of the size of
the compiled knowledge base.

The knowledge compilation paradigm typically assumes that the “intractable
part” of the processing be done once, during compilation. This assumption could
render updating the knowledge base infeasible if recompilation is required. The
ability to install updates without recompilation may therefore considerably widen
applicability.

In this paper, several update operations not requiring recompilation are devel-
oped. These include disjunction, substitution of truth constants, conjunction with
unit clauses, reordering of variables, and conjunction with clauses.

1 Introduction

The last decade has seen a virtual explosion of applications of propositional logic. One
is knowledge representation, and one approach to it is knowledge compilation, intro-
duced by Kautz and Selman [7]. Knowledge bases can be represented as propositional
theories, often as sets of clauses, and the propositional theory can then be compiled; i.e.,
preprocessed to a form that admits fast response to queries. While knowledge compila-
tion is intractable, it is done once, in an off-line phase, with the goal of making frequent
on-line queries efficient.

The answering such queries in time polynomial (indeed, often linear) in the size of
the compiled theory is not very fast if the compiled theory is exponential in the size
of the underlying propositional theory. As a result, many investigators have focused on
minimizing the size of the compiled theory, possibly by restricting or approximating the
original theory. Another approach, introduced in [11], extended in [12], and developed
further in this paper, is to admit large compiled theories — stored off-line1 — on which
queries can be answered in time linear in the size of the query. A data structure that has
this property is called a reduced implicate trie or, more simply, an ri-trie [11].

1 The term off-line is used in two ways: first, for off-line memory, such as hard drives, as opposed
to on-line storage, such as RAM, and secondly, for “batch preparation” of a knowledge base
for on-line usage.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 183–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



184 N.V. Murray and E. Rosenthal

In the knowledge compilation paradigm, the emphasis is typically on performing
the “intractable part” of the processing once, during compilation. In the absence of
an efficient updating technology, this favors knowledge bases that are stable; i.e., a
single compilation is expected to provide a repository that remains useful over a large
number of queries. However, updating operations (referred to as transformations in [2])
for various target languages have been studied. Here, the first small steps are taken
towards solving this problem for ri-tries.

In order that this paper be self-contained, basic notions involving formulas, clauses,
implicants, and implicates are covered in the next section. The definitions of reduced
implicate tries and methods for computing them are presented in Section 3. Some
fairly straightforward fundamental properties of ri-tries are presented in Section 4. In
Section 5, several types of updates are introduced along with techniques for achieving
them. None of these updates require recompilation.

2 Preliminaries

For the sake of completeness, define an atom to be a propositional variable, a literal
to be an atom or the negation of an atom, and a clause to be a disjunction of literals.
Clauses are often referred to as sets of literals. Most authors restrict attention to con-
junctive normal form (CNF) — a conjunction of clauses — but no such restriction is
required in this paper.

Consequences expressed as minimal clauses that are implied by a formula are its
prime implicates; (and minimal conjunctions of literals that imply a formula are its
prime implicants). Implicates are useful in certain approaches to non-monotonic rea-
soning [9,14,16], where all consequences of a formula — for example, the support set
for a proposed common-sense conclusion — are required. The implicants are useful
in situations where satisfying models are desired, as in error analysis during hardware
verification. Many algorithms have been proposed to compute the prime implicates (or
implicants) of a propositional boolean formula [1,3,5,6,8,13,15,17,18].

A typical query of a propositional theory has the form, is a clause logically entailed
by the theory? By definition, an implicate of a logical formula is a clause entailed by
the formula, i.e., a clause that contains a prime implicate. So if F is a formula and C
is a clause, then C is an implicate of F if (and only if) C is satisfied by every inter-
pretation that satisfies F . Thus asking whether a given clause is entailed by a formula
is equivalent to the question, Is the clause an implicate of the formula? Throughout the
paper, this question is what is meant by query.

3 Background

The goal of knowledge compilation is to enable fast queries. Prior approaches had
the goal of a small (i.e., polynomial in the size of the initial knowledge base) com-
piled knowledge base. Typically, query-response time is linear, so that the efficiency
of querying the compiled knowledge base depends on its size. The approach we build
upon from [11] is to admit target languages that may be large as long as they enable fast
queries. The idea is for the query to be processed in time linear in the size of the query.



Updating Reduced Implicate Tries 185

Thus, if the compiled knowledge base is exponentially larger than the initial knowl-
edge base, the query must be processed in time logarithmic in the size of the compiled
knowledge base. The ri-trie is one data structure that admits such fast queries.

3.1 Implicate Tries

The trie is a well-known data structure introduced by Morrison in 1968 [10]; it is a tree
in which each branch represents the sequence of symbols labeling the nodes2 on that
branch, in descending order. A prefix of such a sequence may be represented along the
same branch by defining a special end symbol and assigning an extra child labeled by
this symbol to the node corresponding to the last symbol of the prefix. For convenience,
it is assumed here that the node itself is simply marked with the end symbol, and leaf
nodes are also so marked. One common application for tries is a dictionary. The ad-
vantage is that each word in the dictionary is present precisely as a (partial) branch in
the trie. Checking a string for membership in the dictionary merely requires tracing a
corresponding branch in the trie. This will either fail or be done in time linear in the
size of the string.

Tries have also been used to represent logical formulas, including sets of prime im-
plicates [16]. The nodes along each branch represent the literals of a clause, and the
conjunction of all such clauses is a CNF equivalent of the formula represented by the
trie. But observe that this CNF formula is significantly larger than the corresponding
trie (see Figure 1). The literal that labels each interior node of the trie would appear
once in each of the separate clauses represented by all branches of the subtrie rooted at
that node. (The zero root in Figure 1 assures a single trie and prevents a forest.)

}

r

s s

p, q, s{ }

}p, r, s }{

0

p

q r

s

q

r

s

s s
r

s s

{ p, q, r, s }

{ }

}

{

{ ,

,

,

,

,
,

p, q,    r,    s

p, q, r,    s

{ p, q,    r, s

{ }p, q,    s

p,    q, r, s{ } ,

Fig. 1. A Trie and its CNF Equivalent

In fact, the trie can be interpreted directly as an NNF formula, recursively defined
as follows: A trie consisting of a single node represents the constant labeling that node.
Otherwise, the trie represents the disjunction of the label of the root with the conjunction
of the formulas represented by the tries rooted at its children.

2 Many variations have been proposed in which arcs rather than nodes are labeled, and the labels
are sometimes strings rather than single symbols.



186 N.V. Murray and E. Rosenthal

Suppose first that all implicates are stored in the trie; the result is called an implicate
trie. To define it formally, let p1, p2, ..., pn be the variables that appear in the input
knowledge base D, and let qi be the literal pi or ¬pi. Literals are ordered as follows:
qi ≺ qj iff i < j. (This can be extended to a total order by defining¬pi ≺ pi, 1 ≤ i ≤ n.
But neither queries nor branches in the trie will contain such complementary pairs.) The
implicate trie for D is a tree defined as follows: If D is a tautology (contradiction), the
tree consists only of a root labeled 1 (0). Otherwise, it is a tree whose root is labeled 0
and has, for any implicateC = {qi1 , qi2 , . . . , qim}, a child labeled qi1 , which is the root
of a subtree containing a branch with labels corresponding to C − {qi1}. The clause C
can then be checked for membership in time linear in the size ofC, simply by traversing
the corresponding branch.

Note that the node on this branch labeled qim will be marked with the end symbol.
Furthermore, given any node labeled by qj and marked with the end symbol, if j < n,
it will have as children nodes labeled qk and ¬qk , j < k ≤ n, and these are all marked
with the end symbol. This is an immediate consequence of the fact that a node marked
with the end symbol represents an implicate which is a prefix (in particular, subset) of
every clause obtainable by extending this implicate in all possible ways with the literals
greater than qj in the ordering.

3.2 Reduced Implicate Tries

Recall that for any logical formulas F and α and subformula G of F , F [α/G] denotes
the formula produced by substituting α for every occurrence of G in F . If α is a truth
functional constant 0 or 1 (false or true), and if p is a negative literal, we will slightly
abuse this notation by interpreting the substitution [0/p] to mean that 1 is substituted
for the atom that p negates.

The following simplification rules are useful (even if trivial).

SR1. F −→ F [G/G ∨ 0] F −→ F [G/G ∧ 1]
SR2. F −→ F [0/G ∧ 0] F −→ F [1/G ∨ 1]
SR3. F −→ F [0/p ∧ ¬p] F −→ F [1/p ∨ ¬p]

Formally, these rules are defined for (arbitrary) formulas. However, they are also ap-
plicable to the tries in this paper: Any such trie corresponds to an NNF formula as
described above. To simplify a trie, apply the applicable rules to the corresponding for-
mula and construct the trie that corresponds to the resulting formula. (It is easy to see
that each rule preserves NNF, and that the resulting formula will correspond to a unique
trie.) As a result, ri-tries and formulas will be treated interchangeably. It is also conve-
nient to regard ri-tries as 3-ary rather than n-ary trees, through the introduction of extra
interior nodes labeled 0. Notation (using 4-tuples) that emphasizes the tree structure
of these tries will be introduced and used when this viewpoint is convenient. Formula
notation is used when it is felt that a more traditional viewpoint is helpful.

If C = {qi1 , qi2 , . . . , qim} is an implicate of F , it is easy to see that the node labeled
qim will become a leaf if these rules are applied repeatedly to the (formula represented
by the) subtree of the implicate trie of F rooted at qim . Moreover, the product of apply-
ing these rules to the entire implicate trie until no further applications of them remain
will be a trie in which no internal nodes are marked with the end symbol and all leaf



Updating Reduced Implicate Tries 187

nodes are, rendering that symbol merely a convenient indicator for leaves. The result
of this process is called a reduced implicate trie or simply an ri-trie. The branches of
an ri-trie will in general correspond to a proper subset of all implicates and to a proper
superset of the prime implicates.

Consider an example. Suppose that the knowledge base D contains the variables
p, q, r, s, in that order, and suppose that D consists of the following clauses: {p, q,¬s},
{p, q, r}, {p, r, s}, and {p, q}. Both the implicate trie and the ri-trie are indicated in
Figure 2. The latter is simply the sub-trie obtained by making the circled node a leaf.

r

s s

0

p

q r

s

q

r

s

s s
r

s s

This node is a leaf in the
reduced implicate trie

Fig. 2. Implicate Trie and ri-Trie

In the implicate trie, there are eight branches and eleven end markers representing
its eleven implicates (nine in the subtree rooted at q, and one each at the two rightmost
occurrences of s.)

3.3 Computing ri-Tries

The ri-trie of a formula can be obtained by applying the recursive RIT operator in-
troduced in [11]. Let F be a logical formula, and let the variables of F be V =
{p1, p2, ..., pn}. Then the RIT operator is defined by

RIT(F , V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F V = ∅

pi ∨ RIT(F [0/pi], V − {pi})
∧

¬pi ∨ RIT(F [1/pi], V − {pi})
∧

RIT((F [0/pi] ∨ F [1/pi]), V − {pi})

pi ∈ V

where pi is the variable of lowest index in V .
Implicit in this definition is the use of simplification rules SR1, SR2, and SR3.
A prefix of a clause {q1, q2, ..., qk} is defined to be a clause of the form {q1, q2, ..., qi},

where 0 ≤ i ≤ k. Implicit in this definition is a fixed ordering of the variables; also, if
i = 0, then the prefix is the empty clause.



188 N.V. Murray and E. Rosenthal

Theorems 1 and 2 below are taken from [11]. Essentially, they guarantee that the
RIT operator produces ri-tries. In other words, the resulting trie is logically equivalent
to the original formula, its branches are all implicates of the formula, and any implicate
has a unique prefix that corresponds precisely to a branch.

Theorem 1. If F is any logical formula with variable set V , then RIT(F , V ) is logi-
cally equivalent to F , and each branch of RIT(F , V ) is an implicate of F . ��

Theorem 2. Let F be a logical formula with variable set V , and let C be an implicate
of F . Then there is a unique prefix of C that is a branch of RIT(F , V ). ��

Let Imp(F) denote the set of all implicates ofF . A pseudocode algorithm that produces
ri-tries was given in [11]. The algorithm relies heavily on the following lemma:

Lemma 1. Given logical formulasF and G, Imp(F ∨ G) = Imp(F) ∩ Imp(G). ��

The lemma assures us that the branches produced by the third conjunct of the RIT oper-
ator are precisely the branches that occur in both of the first two (ignoring, of course, the
root labels pi and ¬pi). In particular, the recursive call RIT((F [0/pi] ∨ F [1/pi]), V −
{pi}) is avoided. This is significant because that call doubles the size of the formula
along a single branch. Further use of this lemma is made in Section 5.

4 ri-Tries as Dags

Definition. Let D1 and D2 be directed acyclic graphs (dags). Then D1 and D2 are
said to be isomorphic if there is a bijection f such that if (A,B) is an edge in D1,
then (f(A), f(B)) is an edge in D2. If the nodes of the dags are labeled, then the
isomorphism must also preserve labels: Label(A) = Label(f(A)).

For the remainder of this paper, we will assume all isomorphisms to be label-
preserving.

Theorem 3. LetR be a reduced implicate trie, and let f be an isomorphism fromR to
R. Then f is the identity map onR.

Proof. We proceed by induction on the number of variables inR. The result is trivial if
there is only one variable, so assume true for any ri-trie with at most n variables, and
supposeR has n+ 1 variables. The root has at most three children, labeled p1,¬p1, 0.
Since each has a distinct label and f is label preserving, f must map each of these
children to itself. Note that the edge preservation property of f ensures that f maps
each subtrie to itself. The induction hypothesis thus applies to each subtrie, and the
proof is complete. ��

The theorem, while straightforward, is not immediate. In Figure 3, the dag has a label-
preserving isomorphism that is not the identity because it swaps the nodes labeled ”a”.

The induction of the last theorem can easily be adapted to prove

Theorem 4. LetF and G be logically equivalent formulas. Then, with respect to a fixed
variable ordering, RIT(F ) is isomorphic to RIT(G).



Updating Reduced Implicate Tries 189

r

b

aa

Fig. 3. Non-Identity Label-Preserving Isomorphism

Note that F and G may have different variable sets. In that case, we assume that the
fixed ordering in the theorem refers to the union of these variable sets. As a result,
comparing the ri-tries of two formulas amounts to a (not necessarily practical) test for
logical equivalence. On the other hand, if the formulas are known to be equivalent,
attention can be restricted to variables in the symmetric difference of their variable sets;
all others are redundant.

5 Updating ri-Tries

It is typical in the knowledge compilation paradigm to assume that the intractable part
of the processing is done only once (or perhaps just not very often). In the absence
of an efficient updating technology, this favors knowledge bases that are stable; i.e., a
single compilation is expected to provide a repository that remains useful over a large
number of queries. The original knowledge base can always be modified and then re-
compiled, but in general this is expensive. As a result, updates that can be installed into
the compiled knowledge base without recompiling have the potential to considerably
widen applicability.

Several operations on ri-tries are developed in this section; unless stated otherwise,
the variable set under consideration will be assumed to be fixed. The intersection op-
eration is defined precisely and proved to be correct. This is essentially the process
captured informally by the pseudocode routine called buildzero from [11]. Comput-
ing the intersection of the implicate sets of two ri-tries is one way to implement their
disjunction. The ri-trie produced is precisely the result of applying the RIT operator
produces to the disjunction of the two original formulas (with respect to a fixed variable
ordering). Thus, given a formulaF compiled into ri-trie TF , we can compute the ri-trie
for F ∨ G by compiling G to TG and then computing the intersection of TF and TG .

The process of substituting truth values for variables in an ri-trie is also investigated.
Even this apparently simple operation requires some care: Preserving equivalence is
trivial, but preserving the prefix property is not.

A third operation that developed in this section conjoins a unit clause to an ri-trie.
This is a rather specialized update that may not very useful in its own right, but it plays
an important role in the operation of conjoining a clause.



190 N.V. Murray and E. Rosenthal

The problem of reordering the variables in an ri-trie is also addressed. Suppose for-
mula F has been compiled into ri-trie TF . The techniques developed for unit conjunc-
tion can be employed to compute a new ri-trie for F (without recompiling) in which
the only change is in the ordering: The ith variable is made first.

Finally, it is shown how the ri-trie for a formula F conjoined with a clause C can
be computed directly from TF , the ri-trie for F , without recompiling. This is accom-
plished by employing conjunction with units, variable reordering, and intersection.

A detailed analysis of the efficiency of the operations developed here is beyond the
scope of this paper. Nevertheless, it is easy to see that other than conjoining a clause,
all operations are no worse than linear in the size of the ri-trie. The operations could
require visiting every node, but at each visited node the computation is O(1). Conjoin-
ing a clause is accomplished by executing a loop whose duration is proportional to the
size of the clause. The practicality of these operations is likely to be ultimately decided
by experimentation. But the goal of knowledge compilation is to avoid recompilation;
updating is therefore a desirable alternative.

5.1 Intersecting ri-Tries

Given any two formulas F and G, fix an ordering of the union of their variable sets,
and let TF and TG be the corresponding ri-tries. The intersection of TF and TG , is
defined to be the ri-trie that represents the intersection of the implicate sets with respect
to the given variable ordering. By Theorems 1 and 4, and Lemma 1, this is the ri-
trie for F ∨ G. This definition captures the computation expressed in pseudocode as
the function buildzero in [11]. There, the entire pseudocode algorithm represents the
recursive operator RIT that defines the ri-trie for a formula.

Similarly, the INT operator can be defined recursively. It is again assumed for conve-
nience that the trie is represented as a ternary tree rather than as an n-ary trie. The root
of the entire trie is 0 (for non-tautologies), and any node at level i has ordered children
that are either empty or are tries whose roots are labeled pi+1, ¬pi+1, and 0. As a result,
a trie T rooted at pi can be represented notationally as a 4-tuple< pi, T +, T −, T 0 >.
This trie represents the formula pi ∨ (T + ∧ T − ∧ T 0), and we write T − pi to denote
the second disjunct (which is equivalent to T ∧ ¬pi). The predicate leaf returns true
whenever all sub-tries are empty.

Given two identically ordered tries TF and TG , INT(TF , TG) is defined as follows.

INT(TF , TG) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ TF = ∅ ∨ TG = ∅

TF leaf (TG)

TG leaf (TF )

∅ leaf (TF
⊕
TG)

TF
⊕
TG otherwise

where TF
⊕
TG = < r, INT(T +

F , T
+
G ), INT(T −

F , T
−
G ), INT(T 0

F , T 0
G ) > and r

is the root label of both TF and TG .



Updating Reduced Implicate Tries 191

First note that the INT operator clearly produces a labeled trie that has the structure
of a ternary tree exactly like its arguments. Lemma 2 and Theorem 5 show that this trie
is precisely the ri-trie that is the intersection of its arguments. Observe also that in case
four, the leaf test on TF

⊕
TG is required. When neither argument is a leaf (as ruled out

by previous cases) and yet the intersections of all corresponding sub-tries are empty,
TF
⊕
TG produces a leaf, but the two tries share no branches. Finally, note that when

considering the implicates corresponding to a branch in an ri-trie, the zero labels are
ignored.

Lemma 2. Let TF and TG be ri-tries having the same variable ordering. Let CF be a
non-empty prefix of CG , where CF is a branch in TF and CG is a branch in TG . Then
CG is a branch in INT(TF , TG).

Proof. By induction on n, the number of literals in CF .
If n = 1, thenCF = {pi} is a singleton; it is also a branch in TF , which in turn must

be a root leaf. So case 3 in the definition of INT applies. The intersection will be TG ,
and CG is by definition a branch in TG and thus also in the intersection.

Otherwise, assume true for 1 ≤ n ≤ k, and suppose n = k + 1. Let pi be the first
literal in CF . Since both CF and CG correspond to branches of length greater than one,
case 5 must apply. Clearly, pi is the root label of TF and of TG . Each of CF −{pi} and
CG − {pi} is non-empty, and the former is a prefix of the latter.

As a result, CF − {pi} is a branch in T +
F , T −

F , or T 0
F ; without loss of generality say

T +
F . Then CG − {pi} is a branch in T +

G . Since CF − {pi} contains at most k literals,
the induction hypothesis applies. Therefore, CG − {pi} is a branch in INT(T +

F , T
+
G ),

which implies that CG is a branch in INT(TF , TG). ��

Observations

1. To apply the induction hypothesis to INT(T +
F , T

+
G ), T +

F and T +
G must themselves

be ri-tries. This is immediate: they are each the ri-trie for the clause set that they
represent.

2. All non-empty branches of the intersection trie are constructed via zero or more
applications of case 5, followed by one application of either case 2 or case 3, in
the definition of INT. When the computation terminates from case 2(3), each such
branch corresponds to the identical branch in TF (TG) and to a branch in TG (TF )
that is a prefix of the branch in the intersection.

Theorem 5. Let TF and TG be the ri-tries for F and G having the same variable or-
dering. Then INT(TF , TG) is the ri-trie that is the intersection of TF and TG and, as a
result, is the ri-trie for F ∨ G with respect to the given variable ordering.

Proof. LetC be an implicate ofF∨G. By Lemma 1,C is an implicate of bothF and G.
Then by Theorem 2, there is a unique prefix CF of C that is a branch in TF ; similarly,
there is a unique prefix CG of C that is a branch in TG . We must show that some unique
prefix of C is a branch in the intersection.

If C is the empty clause, then both TF and TG are singleton roots labeled 0, so is the
intersection, and there is nothing to prove. If either CF or CG is empty, then one of the
tries is a singleton root, the intersection is the other trie, and the result is immediate.



192 N.V. Murray and E. Rosenthal

So assume C, CF , and CG are not empty. One or both of CF and CG is a prefix of
the other; without loss of generality, assume CF is a prefix of CG . Therefore the branch
corresponding to CF in TF is a prefix of the branch in TG corresponding to CG . By
Lemma 2, CG corresponds to a branch in INT(TF , TG).

No other prefix C′ of C can be a branch in the intersection because by Observation
2 after Lemma 2, C′ would be a branch in one of TF or TG . But this would violate the
unique prefix property for either CF or CG . ��

Using Theorem 5, we can give the following definition for the RIT operator. It differs
from the original definition introduced in [11] in that it provides a formal basis for the
computation of ri-tries as ternary trees using intersection and structure sharing, exactly
as embodied by the pseudocode in that paper.

RIT(F , V ) =

⎧
⎨

⎩

F V = ∅

(pi ∨ B1) ∧ (¬pi ∨ B2) ∧ (0 ∨ B3) pi ∈ V

where pi is the variable of lowest index in V , and

B1 = RIT(F [0/pi], V − {pi})
B2 = RIT(F [1/pi], V − {pi})

and B3 = INT(B1, B2)

5.2 Simplifying ri-Tries

Suppose that formula F has been compiled into ri-trie TF , and consider the problem
of computing the ri-trie T ′

F for F [1/pi]. If we just compute TF [1/pi] and perform the
obvious simplifications, we can get a trie representation of F [1/pi] in the sense that the
branches correspond to a CNF equivalent. This is accomplished merely by removing
¬p from all branches on which it occurs, and cutting off all branches at p on which
it occurs (simplifying where necessary). The resulting trie, however, is not in general
an ri-trie; the prefix property may no longer hold. In Figure 4, the ri-trie on the left
represents the eleven implicates from Figure 2. Read as an NNF formula, it represents

0

p

q r

s

q

r

s

0

p

r

s

r

s

1/q[ ]

Fig. 4. Substituting a truth constant and the prefix property



Updating Reduced Implicate Tries 193

(p∨(q∧(¬q∨r∨s)∧(r∨s))). The ri-trie on the right represents the result of substituting
true (1) for q and simplifying. The resulting trie has the required prefix as a branch, but
it is no longer unique. In particular, the third (rightmost) branch is unchanged but is
now subsumed by the result of simplifying the second branch. It is shown below that
this redundancy follows a predictable pattern and can therefore be avoided.

To deal with this problem, we define a new operation called the prefix property pre-
serving substitution, written P3S; it is defined as follows.

Let ri-trie T = < r, T +, T −, T 0 >, let the variables V = {p1, . . . , pn} of T be
ordered by index, and let α ∈ {0, 1} be a truth constant. Then

P3S(T , [α/pi], V ) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T V = ∅

T [α/pi] i = m ∧ V = {pm}

< r, pm ∨ P3S(T + − pm, [α/pi], V − {pm}),
¬pm ∨ P3S(T − − (¬pm), [α/pi], V − {pm}), m < i ≤ n

P3S(T 0, [α/pi], V − {pm}) >

< r, ∅, T −[0/¬pm], ∅ > (i = m < n) ∧ α = 1

< r, T +[0/pm], ∅, ∅ > (i = m < n) ∧ α = 0

where pm is the variable of lowest index in V.
Theorem 6 below guarantees that P3S produces exactly the right object.

Theorem 6. Let TF be the ri-trie for F with respect to variable ordering V , where
pi ∈ V . Then P3S(TF , [α/pi], V ) is the ri-trie for F [α/pi], α = 0, 1; i.e., it is
precisely the trie RIT(F [α/pi], V − {pi}).

Proof. By induction on the number of applications of P3S. If n = 1, then in the defini-
tion of P3S, one of cases one, two, four, or five must apply.

Case one is that the trie is a constant, either 0 or 1; case two is that the trie simplifies
to a constant after substituting for pm, the only variable in the trie. For these cases, the
lemma is immediate, so consider case four.

Note first that the roots of T + and of T − are pm and¬pm, respectively. Since α = 1,
T + is removed because its root has been made true; for T −, the root has become 0,
in effect deleting ¬pm along all branches in that sub-trie. So with respect to T + and
T −, the P3S operator is merely performing routine truth-functional simplifications. The
crucial point is that, T 0, which does not contain pm, is removed.

Now consider a branch B0 = {pm+1, . . . , pw} of T 0. By definition, B0 is in the in-
tersection of (the sub-tries of) T + and T −. By Lemma 2, some prefix B− =
{pm+1, . . . , pk}, k ≤ w, of B0 is a branch in T − − (¬pm). In essence removing ¬pm

from any branch of T − results in a branch that subsumes its corresponding branch in
T 0 (see Figure 5). Therefore, dropping T0 is equivalence preserving. Also, T −[0/¬pm]
must have the prefix property because otherwise T − would not, contrary to hypothesis.



194 N.V. Murray and E. Rosenthal

T −

T 0

T +

B− T −

p
k

B−

r

0p p

r

pw

m m

/1[ p ]m

k
p

p
kB0

Fig. 5. Case four of P3S

We have shown that T −[1/pm] has the prefix property and is logically equivalent to
F [1/pm]. But then Theorem 4 guarantees that this is identical to RIT(F [1/pm], V −
{pm}). The proof for case five is exactly the dual, and the base cases are now proven.

Assume now that the theorem holds whenever P3S is applied at most k times, and
suppose k+ 1 applications are required to compute P3S(T , [α/pi], V ). The first call to
P3S must use case three; the root is 0 because this is the initial call on the entire ri-trie,
and the result is

< 0, p1 ∨ P3S(T + − p1, [α/pi], V − {p1}),

¬p1 ∨ P3S(T − − (¬p1), [α/pi], V − {p1}),

P3S(T 0, [α/pi], V − {p1}) > .

The recursive calls to P3S will require at most k applications; the induction hypoth-
esis applies in each. As a result, this is precisely

< 0, p1∨RIT((T +−p1)[α/pi], (V −{p1})−{pi}),

¬p1 ∨ RIT((T − − (¬p1))[α/pi], (V − {p1})− {pi}),

RIT(T 0[α/pi], (V − {p1})− {pi}) > .

As formulas, T + − p1 = F [0/p1], T − − (¬p1) = F [1/p1], and T 0 = (F [0/p1]
∨ F [1/p1]). The formulas may be substituted for the tries and by Theorem 4, the
second, third, and fourth elements of the tuple are unchanged; the result is

< 0, p1 ∨RIT(F [0/p1][α/pi], (V −{pi})−{p1}),

¬p1 ∨RIT(F [1/p1][α/pi], (V − {pi})− {p1}),

RIT((F [0/p1][α/pi] ∨ F [1/p1][α/pi]), (V − {pi})− {p1}) > .



Updating Reduced Implicate Tries 195

The boolean replacements can be commuted, the root is 0, and so the trie represents
the conjunction

p1 ∨RIT(F [α/pi][0/p1], (V − {pi})− {p1})
∧

¬p1 ∨ RIT(F [α/pi][1/p1], (V − {pi})− {p1})
∧

RIT((F [α/pi][0/p1] ∨ F [α/pi][1/p1]), (V − {pi})− {p1})

This is precisely what results from the first expansion of RIT(F [α/pi], (V −{pi})),
and this completes the proof. ��

5.3 Conjoining Unit Clauses

Suppose a formula F has been compiled into the ri-trie TF , and consider the problem
of computing the ri-trie for F ∧ {p}. (We will treat p as a variable; the dual case when
it is a literal that negates its variable is straightforward.) Let V = {p1, . . . , pn} be the
variables of TF , where p = pi. Suppose the RIT operator is applied to TF ∧ {p} using
the variable order V ′ = {p, p1, . . . , pi−1, pi+1, . . . , pn}. Then

RIT((TF ∧ {p}), V ′) =

⎛

⎜⎜⎜⎜⎜⎜⎝

p ∨ RIT((TF ∧ {p})[0/p], V ′ − {p})
∧

¬p ∨ RIT((TF ∧ {p})[1/p], V ′ − {p})
∧

0 ∨ INT
(

RIT((TF ∧ {p})[0/p], V ′ − {p}),
RIT((TF ∧ {p})[1/p], V ′ − {p})

)

⎞

⎟⎟⎟⎟⎟⎟⎠

Since (TF ∧ {p})[0/p] = 0 and (TF ∧ {p})[1/p] = TF [1/p], we have

RIT((TF ∧ {p}), V ′) =

⎛

⎜⎜⎜⎜⎝

p ∨ RIT(0, V ′ − {p})
∧

¬p ∨ RIT(TF [1/p], V ′ − {p})
∧

0 ∨ INT(0, RIT(TF [1/p], V ′ − {p}))

⎞

⎟⎟⎟⎟⎠

Clearly, RIT(0, V ′−{p})=0 and INT(0, RIT(TF [1/p], V ′−{p})) = RIT(TF [1/p],
V ′−{p}). By Theorem 6, RIT(TF [1/p], V ′−{p}) = P 3S(TF [1/p], V ′). So we now
have

RIT((TF ∧ {p}), V ′) =

⎛

⎜⎜⎜⎜⎝

p
∧

¬p ∨ P 3S(TF , [1/p], V ′)
∧

0 ∨ P 3S(TF , [1/p], V ′))

⎞

⎟⎟⎟⎟⎠

and the result is the ri-trie for F ∧ {p} with respect to the new variable ordering V ′.
This is shown in Figure 6.



196 N.V. Murray and E. Rosenthal

0

pp 0

,P
3
S TF ,V’ )( [ ,P

3
S TF ,V’ )( [] ]1/p 1/p

Fig. 6. Conjoining the Unit Clause {p }

The process of computing the ri-trie for F ∧ {p}, given the ri-trie TF can now
be summarized. First, compute the ri-trie for F [1/p] by computing T2 = P 3S(F ,
[1/p], V ′). Construct T1 from a copy of T2, but with the root replaced by ¬p. Finally,
build the trie in which the root is labeled 0 and the children are leaves labeled p, T1, and
T2, in that order.

5.4 Reordering ri-Tries

In the previous section, the conjunction of a unit clause was aided considerably by
adopting a new variable ordering. Using a similar analysis, such a reordering (involving
only one variable) can be accomplished alone, without any modification of the knowl-
edge base represented.

Suppose TF = RIT(F , V ), where V = {p1, . . . , pn}. Consider the problem of com-
puting a new ri-trie T ′

F = RIT(F , V ′), where V ′ = {pi, p1, . . . , pi−1, pi+1, . . . , pn}.
Once again apply the RIT operator, but this time to TF alone using the new variable
order.

RIT(TF , V ′) =

⎛

⎜⎜⎜⎜⎜⎜⎝

pi ∨ RIT(TF [0/pi], V ′ − {pi})
∧

¬pi ∨ RIT(TF [1/pi], V ′ − {pi})
∧

0 ∨ INT
(

RIT(TF [0/pi], V ′ − {pi}),
RIT(TF [1/pi], V ′ − {pi})

)

⎞

⎟⎟⎟⎟⎟⎟⎠

Once again the P 3S operator and Theorem 6 prove useful. All four invocations of
RIT on the right side of the above equation can be replaced by equivalent expressions
that use P 3S. Let T0 = P 3S(TF , [0/pi], V ′), T1 = P 3S(TF , [1/pi], V ′), and T2 =
INT(T0, T1). Then

RIT(TF , V ′) = (pi ∨ T0) ∧ (¬pi ∨ T1) ∧ T2



Updating Reduced Implicate Tries 197

5.5 Adding New Clauses

The results of the previous sections can be combined to provide a technique for updating
an ri-trie to account for a new clause being added to the knowledge base. Assume
that formula F has been compiled into ri-trie TF . Now we consider the problem of
computing the ri-trie T C

F for F ∧ C, where C = {l1, . . . , lm}.
First observe that F ∧ C =

∨m
i=1(F ∧ {li}). Therefore, the ri-trie for F ∧ C

can be computed as the intersection of the ri-tries for (F ∧ {li}), 1 ≤ i ≤ m. It will
be more convenient to express this as a series of pairwise intersections between (TF ∧
(∨i

j=1 lj)) and (TF∧{li+1}), 1 ≤ i < m. Each unit conjunction can be computed using
the techniques of Section 5.3. However, in each case, the ri-trie would be constructed
with respect to a variable ordering in which the variable of the unit is first. This can
be overcome with the variable reordering results from Section 5.4. This leads to the
following process.

T ← (TF ∧ {l1})
i← 1
while (i < m)
T ′ ← (TF ∧ {li+1})
Recompute T making the variable of li+1 first.
T ← INT(T , T ′)
i← i+ 1

end while
T C
F ← T

After termination, T C
F is the ri-trie for F ∧ C.

6 Future Work

The results in this paper provide some progress in the update and maintenance of
ri-tries, but many other questions remain. For example, how can the presence of new
variables in clauses or formulas being conjoined to an ri-trie be handled? Are the
techniques introduced here sufficient? What if information is to be removed or
somehow changed? What operations are there, and which can be performed without
recompiling?

There is inherent redundancy in representing implicates that lack many variables
early in the ordering. Some techniques for reducing such redundancy were developed
in [12], but they apply directly only to conjunctions of two formulas. Can they be ex-
tended to n-ary conjunctions? Can other reduction techniques be developed?

Acknowledgments

The authors are grateful to the referees, each of whom provided useful suggestions and
constructive criticism.



198 N.V. Murray and E. Rosenthal

References

1. Coudert, O., Madre, J.: Implicit and incremental computation of primes and essential impli-
cant primes of boolean functions. In: Proceedings of the 29th ACM/IEEE Design Automation
Conference, 36–39 (1992)

2. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence
Research 17, 229–264 (2002)

3. de Kleer, J.: An improved incremental algorithm for computing prime implicants. Proceed-
ings of AAAI-92, San Jose, CA, pp. 780–785 (1992)

4. Hähnle, R., Murray, N.V., Rosenthal, E.: Normal Forms for Knowledge Compilation. In:
Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI),
vol. 3488, Springer, Heidelberg (2005)

5. Jackson, P., Pais, J.: Computing prime implicants. In: Stickel, M.E. (ed.) 10th International
Conference on Automated Deduction. LNCS, vol. 449, Springer, Heidelberg (1990)

6. Jackson, P.: Computing prime implicants incrementally. In: Kapur, D. (ed.) Automated De-
duction - CADE-11. LNCS, vol. 607, Springer, Heidelberg (1992)

7. Kautz, H., Selman, B.A.: general framework for knowledge compilation, in Proceedings of
the International Workshop on Processing Declarative Knowledge (PDK), Kaiserslautern,
Germany (July 1991)

8. Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates.
Journal of Symbolic Computation 9, 185–206 (1990)

9. Kean, A., Tsiknis, G.: Assumption based reasoning and clause management systems. Com-
putational Intelligence 8(1), 1–24 (1992)

10. Morrison, D.R.: PATRICIA — practical algorithm to retrieve information coded in alphanu-
meric. Journal of the ACM 15(4), 34–514 (1968)

11. Murray, N.V., Rosenthal, E.: Efficient query processing with compiled knowledge bases. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, Springer, Heidelberg (2005)

12. Murray, N.V., Rosenthal, E.: Efficient Query Processing with Reduced Implicate Tries. To
appear, Journal of Automated Reasoning

13. Ngair, T.A.: new algorithm for incremental prime implicate generation. Proc of IJCAI-93,
Chambery, France (1993)

14. Przymusinski, T.C.: An algorithm to compute circumscription. Artificial Intelligence 38, 49–
73 (1989)

15. Ramesh, A., Becker, G., Murray, N.V.: CNF and DNF considered harmful for computing
prime implicants/implicates. In: Journal of Automated Reasoning, vol. 18(3), pp. 337–356.
Kluwer, Dordrecht (1997)

16. Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: prelim-
inary report. Proceedings of the 6th National Conference on Artificial Intelligence, Seattle,
WA , pp. 183-188 (July 12-17 1987)

17. Slagle, J.R., Chang, C.L., Lee, R.C.T.: A new algorithm for generating prime implicants.
IEEE transactions on Computers 19(4), 304–310 (1970)

18. Strzemecki, T.: Polynomial-time algorithm for generation of prime implicants. Journal of
Complexity 8, 37–63 (1992)



A Bottom-Up Approach to Clausal Tableaux

Nicolas Peltier

LIG, CNRS
46, avenue Félix Viallet

38031 Grenoble Cedex, France
Nicolas.Peltier@imag.fr

Abstract. We present a new proof procedure for first-order logic. It is
close in spirit to the usual tableaux-based procedures, but uses a more
compact representation of the search space. Roughly speaking, it con-
structs the tableau from the leaves to the root, and tries to factorize
common subtrees when possible.

We study the complexity of our procedure for several propositional
classes and we show that it is polynomial for all these classes.

1 Introduction

The search for efficient proof calculi is at the heart of automated deduction.
Resolution-based calculi still play a prominent role (for first-order logic), but
many efficient proof procedures are based on semantic tableaux. In this paper,
we restrict ourselves to clausal tableaux, which allow for a number of efficiency
improvements. Roughly speaking, clausal tableaux are based on the following
principle: a tree labeled by literals is constructed by applying repeatedly the fol-
lowing (unique) expansion rule: (i) Choose a clause l1∨ . . .∨ ln occurring in the
considered clause set. (ii) Add n successors labeled respectively by l1, . . . , ln. A
branch is closed if it contains two contradictory literals. The tableau is closed
when all branches are closed, which entails that the clause set at hand is unsatis-
fiable. This procedure extends easily to the first-order case, by using unification
to find the instances allowing to close the branches.

As well known, an additional restriction can be imposed on the above rule,
namely there must exist a connection [5,12] between the chosen node and the
clause that is used to expand the tableau. More precisely, the clause must contain
a literal li that is complementary to the last literal in the branch (this is called
strong connectedness). Thus one of the branches corresponding to l1, . . . , ln can
be immediately closed. This makes the proof procedure non confluent, hence
backtracking must be used to find the closed tableau. However, backtracking is
needed anyway in the first-order case, because it is extremely difficult to define
confluent proof strategies for free variable tableaux [3,10,2,14].

Many improvements can be added to this basic procedure, in order to prune
the search space [11]. Numerous refinements have been proposed, for instance
the Hyper-Tableaux [1], PUHR-Tableaux [8], Model Elimination, Disconnection
method [6,13] etc.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 199–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



200 N. Peltier

In this paper, we present a proof procedure for first-order logic which is based
on similar ideas, but which aims at reducing the search space by “factorizing”
common subspaces when possible.

The basic idea is to construct the closed tableau bottom-up. First, we try to
identify the literals possibly labeling the leaves of the (closed) tableau. They can
be “easily” identified because they correspond to nodes on which the closure rule
can be applied. Thus it suffices either to find a unit clause or to find a “path”
in the tree from a node labeled by a literal l to a node labeled by a literal lc

complementary to l1. This can be done relatively efficiently, because we do not
need to keep track of the whole path connecting the nodes: only the existence of
such a path is important (if propositional clause sets are considered then only
o(n2) potential paths need to be considered, where n denotes the number of
variables). Thus we do not need to construct the tableau explicitly. When the
leaves are known, one can check that the tableau is closed using a bottom-up
procedure. We start at the leaves and we try to reconstruct a closed tableau by
propagation, applying the expansion rule “in reverse”. We stop when the root
can be reached.

As we shall see, this approach can be extended to the first-order case. Its main
advantage is that numerous subparts of the tableau can be shared, because when
the tableau is reconstructed bottom-up, the literals that are used to close the
branches are known, which is obviously not the case in the usual procedure. As
we shall see, this may yield a more compact representation of the search space.
Moreover, some refinements can be added to this basic algorithm:

– First, we may restrict ourselves to leaves labeled by a literal l such that there
exists a path from l to lc and a path from lc to l. Indeed, if there is no path
from lc to l then we can close a tableau starting at lc without applying the
closure rule on the literals l, lc.

– Second, we can fix the ordering ≺ on which the literals are considered in
a given clause. Given a clause a ∨ b for instance (with a ( b) it is useless
to explore the paths through b if the branch corresponding to a cannot be
closed.

– Third, when looking for a path from l to lc we can skip the paths traversing
a literal k ( l. Indeed, as we shall see, the literals can be considered and
eliminated in decreasing order (according to (), which implies that k has
already been eliminated when l is considered. For instance, given the clauses
{a∨b, a∨¬b,¬a∨b,¬a∨¬b} (where a ( b) we can generate the path a→ ¬a
and ¬a → a but not b→ ¬b and ¬b → b. Thus only a and ¬a are available
as potential leaves.

These improvements are very important for pruning the search space, because
they strongly restrict the number of paths and nodes identified as potential
leaves. The formal definition of our approach will be given later, but we now

1 A path through a set of clauses S is a sequence of literals p1, . . . , pn, such that for
all i ∈ [1..n − 1], there exists a clause in S containing pi and pc

i+1.



A Bottom-Up Approach to Clausal Tableaux 201

a0

↙ ↘
b0 c0

↓ ↓
a1 a1

↙ ↘ ↙ ↘
b1 c1 b1 c1

↓ ↓ ↓ ↓
a2 a2 a2 a2

↓ ↓ ↓ ↓
¬a0 ¬a0 ¬a0 ¬a0

× × × ×

Fig. 1. A tableau proof for S2

provide a simple example of application in order to help the reader to grasp the
intuitive idea. For the sake of clarity, this example is purely propositional.

Example 1. We consider the following set of clauses Sn = {a0,¬an ∨ ¬a0} ∪
{¬ai ∨ bi ∨ ci,¬bi ∨ ai+1,¬ci ∨ ai+1 | i ∈ [0..n− 1]}.

Starting from a0 we obtain two different branches labeled by b0 and c0. Both
branches are expanded by a unique node labeled by a1, yielding again two dis-
tinct branches labeled by b1 and c1 respectively. This process is iterated until an

is obtained. At this point, one can use the last clause to derive ¬a0 which closes
the branch. The size of the obtained tableau is o(2n) (see Figure 1)2.

Our procedure can compute (a representation of) the same closed tableau in
polynomial time. We assume that ai ( bi ( ci ( ai+1 for any i ∈ [0..n − 1].
We first try to find a path from a literal l to its complementary lc. The only
possible path is from a0 to ¬a0 (or from ¬a0 to a0). If we choose a0 as a leaf no
tableau can be constructed, since there is no non unit clause containing a0 (thus
no expansion rule can derive a0, except if a0 and ¬a0 both occur in the clause set
which is not the case). Thus we choose ¬a0. Then we try to reconstruct a closed
tableau. The only expansion rule that can derive ¬a0 yields the predecessor node
an. At this point, we can apply two possible expansion rules: one with the clause
¬bn−1 ∨ an, and the other with ¬cn−1 ∨ an. This yields two distinct branches:
bn−1 and cn−1. Again, both branches can be reduced to an−1. Obviously these
two branches can be merged. Indeed, they are labeled by the same literal an−1

and the same set of literals (namely {a0}) is used to closed each branch. This
process is iterated until a0 is reached (see Figure 2).

We call the procedure BTC, for Bottom-up Tableaux Construction.
The rest of the paper is organized as follows. In Section 2 we introduce the

basic definitions that are needed for the understanding of our work. In Section 3

2 Of course, in this particular case, a much shorter tableau (of size o(n)) can be
obtained by starting from the clause an ∨ a0. This simple example is chosen only to
show how our procedure works and not to demonstrate its theoretical power.



202 N. Peltier

a0

↗ ↖
b0 c0

↖ ↗
a1

↗ ↖
b1 c1

↖ ↗
a2

↑
¬a0

Fig. 2. Our procedure (constructing the same closed tableau for S2)

we present a formal description of BTC. In Section 4 we establish its soundness
and refutational completeness. In Section 5 we study its complexity on some
particular classes of propositional formulae. We show that it runs in polynomial
time for many classes, including (but not restricted to) the Horn class or the
Krom class. Section 6 contains concluding remarks and some lines of future
work.

2 Preliminary

The set of terms is built as usual on a given set of function and constant symbols
and a set of variables. An atom is of the form p(t1, . . . , tn) where p is a predicate
symbol and t1, . . . , tn are terms. A literal is either an atom (positive literal) or
the negation of an atom. If l is a literal, then lc denotes the complement of l,
i.e. p(t)c def= ¬p(t) and (¬p(t))c def= p(t). A clause is a finite multiset of literals,
denoted as a disjunction.

A substitution σ is a function from variables to terms. As usual, σ can be
extended into an homomorphism on terms, atoms, literals and clauses.

A term, atom, literal, or clause is said to be ground if it contains no variable.
A substitution is said to be ground if xσ is ground, for all variables x in the
domain of σ. If σ, θ are two substitutions then σθ denotes the composition of
σ and θ. A substitution σ is said to be more general than a substitution θ if
there exists a substitution γ such that θ = σγ. A substitution σ is said to be a
unifier of two terms t, s if tσ = sσ. Two terms, atoms or literals having a unifier
are said to be unifiable. As well known, any unifiable pair of terms has a most
general unifier (mgu), unique up to a renaming of variables.

An interpretation is a set of ground atoms. We write I |= S (or I is a model
of S) if I validates S. If l is an atom, then we have I |= l iff l ∈ I and I |= ¬l iff
l �∈ I. If C is a clause, then I |= C iff for all ground substitutions σ there exists
l ∈ C such that I |= lσ. If S is a set of clauses, then I |= S iff ∀C ∈ S, I |= C. A
set of clauses S having no model is said to be unsatisfiable.



A Bottom-Up Approach to Clausal Tableaux 203

3 Bottom-Up Tableaux Construction

3.1 BTC-formulae

Our proof procedure will be described by a set of inference rules, operating on a
particular kind of formulae, called BTC-formulae. Formally, a BTC-formula is:

– Either of the form (l1 → l2) where l1, l2 are literals. Intuitively, (l1 → l2)
states that there exists a path from l1 to l2 in the tableau.

– Or of the form [l | Φ] where l is a literal and Φ is a set of literals (called the
constraint). This means that one can construct a closed tableau with root
lc, provided the current branch contains all the literals in Φ (i.e. for any
ground substitution σ, lσ is a logical consequence of Φσ).

– Or of the form 〈C〉 where C is a clause (in the usual sense). We write 〈C〉
instead of C to avoid confusions. The initial set of BTC-formulae contains
only the formulae of the form 〈C〉 where C occurs in the considered clause
set.

We extend the application of substitutions to BTC-formulae in a straight-
forward way: (l1 → l2)σ

def= (l1σ → l2σ), [l | Φ]σ def= [lσ | {kσ | k ∈ Φ}], and
〈C〉σ def= 〈Cσ〉.

We assume there is an ordering ( among atoms, such that for any substitution
σ, we have l ( m ⇒ lσ ( mσ. ( is extended to literals by ignoring the sign.
We also assume that we are given a set Γ of literals such that for any ground
literal l, either l ∈ Γ or lc ∈ Γ , and for any non ground literal l, if there exists
a ground substitution σ such that lσ ∈ Γ , then l ∈ Γ . Informally, ( and Γ are
used to specify the strategy.

If l, k are literals and S is a set of clauses, we write l �S k iff either l = k
or if l and kc are not unifiable and if for any (renaming of a) clause C ∈ S
containing a literal l′ such that l′ and l have a m.g.u. θ, kcθ ∈ Cθ. A clause is
said to be blocked in S if it contains two literals l, k such that there exists m
with lc �S m and kc �S m

c. In particular, any tautological clause is blocked.
Note that checking whether a clause is blocked can be done in polynomial time
w.r.t. the size of the clause set.

Note that if l �S k then for any ground substitution θ, we have lθ �S′ kθ
where S′ denotes the set of ground instances of the clauses in S. Thus, if C is
blocked in S, then any ground instance of C is blocked in S′.

We extend the notion of models and satisfiability to BTC-formulae as follows.
An interpretation I validates a ground BTC-formula π (written I |= π) if either
π is of the form 〈C〉 and I |= C, or π is of the form (l → k) or π is of the form
[l | Φ] and either I |= l or there exists l′ ∈ Φ such that I �|= l′. If π is non ground,
then I |= π iff for all ground substitutions σ, I |= πσ.

3.2 Rules

As for the resolution calculus we assume that the variables that are shared by
some of the premisses are renamed prior to any rule application. The first two
rules allow one to infer BTC-formulae of the form (l → k).



204 N. Peltier

Link
〈l ∨ kc ∨ C ∨ l1 ∨ . . . ∨ ln〉 [l′1 | Φ1] . . . [l′n | Φn]

(l → k)σ
where:

1. σ is the m.g.u of (lc1, . . . , l
c
n) and (l′1, . . . , l

′
n).

2. For any literal l′ occurring in C, l′σ �! kσ.
3. There is no literal in (Φ1 ∪ . . . ∪ Φn)σ that occurs in (l ∨ kc ∨ C ∨

l1 ∨ . . . ∨ ln)σ.
4. (l ∨ kc ∨ C ∨ l1 ∨ . . . ∨ ln)σ is not blocked.

Example 2. We give an example of application, explaining the meaning of the
conditions 2 and 3. Assume that the clause set at hand contains a clause a∨b∨c,
where a ( b ( c.

We start exploring the paths through the above clause. We consider in priority
the greatest literals. The rule Link infers the following BTC-formulae: (a →
¬b), (b → ¬a), (c → ¬a). However, due to the second condition, it does not
infer (a → ¬c) for instance, since in this case we would have C = b and b ( c.
Intuitively, it is not necessary to explore the branch corresponding to c if no
closed subtableau can be found for the branch corresponding to b.

Now, assume that [¬b | ∅] has been derived. This means that we have suc-
ceeded to find a closed subtableau of root b. This offers additional possibilities:
we can derive, for instance: (a→ ¬c) (we apply the rule Link with l = a, k = ¬c,
C = ∅, n = 1 and l1 = b).

Now assume that a branch [¬a | {c}] is derived. This means that there exists
a closed subtableau with root a, but only in the branches containing c. Can we
derive (b → ¬c) ? No because if c occurs before the root b in the tableau, then
the clause a∨ b∨ c holds in the corresponding branch, hence does not need to be
considered. Thus there is no need to explore the paths through it (this justifies
Condition 3, which guarantees that the constructed tableau is regular).

Transitivity
(l1 → l2), (l

′
2 → l3)

(l1 → l3)σ

where l2σ �! l3σ, σ is the mgu of l2, l
′
2.

This rule is very natural: it simply appends two paths. Notice that the condi-
tion l2σ �( l3σ imposes strong limitation on the applicability of the rule. It states
than when searching for a path from l to k, one does not have to consider the
paths through the literals that are strictly greater than k.

Example 3. Let S = {p(x) ∨ q(x, a),¬q(b, y) ∨ p(y)}.
Assume to simplify that ( is empty. The rule Link derives (p(x) → ¬q(x, a))

and (¬q(b, y) → ¬p(y)). Then the Transitivity rule derives (p(b) → ¬p(a)).

The rule below detects literals that can be added in the constraint part of the
BTC-formula. If there exists a (non-trivial) path from a literal l to lc (lc = k
in the rule above) and a path from lc (i.e. k) to l, then l (or lc) is eligible. The



A Bottom-Up Approach to Clausal Tableaux 205

actual sign of the literal (l or lc) is chosen according to the set Γ . The rule uses
unification to find relevant instances, thus additional first-order literals k, l′, k′

need to be considered, where k and l′ are unified with lc and k′ with l.

Leaf Detection
(l → k), (l′ → k′)

[l | l]σ

If σ is a m.g.u of l, kc, l′c, k′, and l ∈ Γ .

This rule allows to identify potential leaves, as explained in the Introduction.
[l | l] states that a closed tableau for lc can be constructed in branches containing
l, which is of course trivial (l ⇒ l).

Example 4. Let S = {p(x, y) ∨ q(x),¬q(a) ∨ p(a, b),¬p(x, y) ∨ q(x),¬q(x) ∨
¬p(x, z)}. We derive using Link the BTC-formulae: (p(x, y) → ¬q(x)), (¬q(a) →
¬p(a, b)), (¬p(x, y) → ¬q(x)), (¬q(x) → p(x, z)). Then by Transitivity we get:
(p(a, y) → ¬p(a, b)) and (¬p(x, y) → p(x, z)). Finally, the Leaf Detection rule
applies yielding: [p(a, b) | {p(a, b)}] or [¬p(a, b) | {¬p(a, b)}].

The following three rules reconstruct the tableau from the leaves to the root.

Propagation
〈l1 ∨ . . . ∨ ln ∨ l〉, [l′1 | Φ1], . . . , [l

′
n | Φn]

[l | Φ1 ∪ . . . ∪ Φn]σ

where σ is the mgu of (lc1, . . . , l
c
n) and (l′1, . . . , l

′
n).

Note that we may have n = 0 (in this case a formula [l | ∅] is derived from 〈l〉).
If Φ1 = . . . = Φn = ∅ then the Propagation rule is essentially equivalent to unit
resolution. Otherwise, the Propagation rule is a form of resolution inference, but
in which one is only allowed to resolve on one particular literal in the clause.

Example 5. Assume that we have derived the following clauses: 〈a∨b∨¬c〉, [¬a |
{d}], [c | {¬e}]. This means that there exists a closed tableau with root a in
the branches containing d and a closed tableau with root ¬c in the branches
containing ¬e. Then it is clear that from these two tableaux and the clause above
one can construct a closed tableau of root ¬b, if the current branch contains d
and ¬e. Thus we derive [b | {d,¬e}].

Clash
〈l1 ∨ . . . ∨ ln〉, [l′1 | ∅], . . . , [l′n | ∅]

〈�〉
where (lc1, . . . , l

c
n) and (l′1, . . . , l

′
n) are unifiable.

The Clash rule is similar to the Propagation rule, but it applies when the root
is reached. It only needs to be applied once.

Deletion
[l | Φ ∪ {l′}]

[l | Φ]σ

where σ is the mgu of l′, lc.



206 N. Peltier

The rôle of the Deletion rule is to simplify the constraint part of the BTC-
formula [l | Φ] when possible. Intuitively, if a closed tableau of root l can be
constructed from a set of literals Φ, then it can also be constructed from Φ \ {l}
(since by definition l already occurs in the branch at root node).

Let S be a set of BTC-formula. We write S � π if π is deducible from S by a
finite number of applications of the above rules.

The Deletion rule corresponds to the Reduction rule in connection tableaux.
As we shall see the Deletion rule in never applied when Horn-renamable clause
sets are considered. Note that the tableaux that are constructed using this pro-
cedure are always connection tableaux (by definition of the Propagation rule).

4 Soundness and Completeness

In this section we prove the basic properties of our proof procedure, namely
soundness and refutational completeness.

As usual, an inference rule is said to be sound if the deduced BTC-formula is
a logical consequence of the premisses.

Lemma 1. The rules Link, Transitivity, Leaf Detection, Propagation, Clash and
Deletion are sound.

Proof. The proof is immediate for the rules Link, Transitivity, Leaf Detection
since the inferred BTC-formulae are either of the form (l → k) or [l | l], hence
are true in any interpretation. Now we consider the remaining rules.

– Propagation. Let π be a BTC-formula deduced by the Propagation rule
from a set of BTC-formulae S. Then π is necessarily of the form [l | Φ1 ∪
. . . ∪ Φn]σ, where S contains BTC-formulae of the form 〈l1 ∨ . . . ∨ ln ∨ l〉
and [l′i | Φi] for any i ∈ [1..n], and where σ is a unifier of (lc1, . . . , l

c
n) and

(l′1, . . . , l
′
n).

Assume that I |= S. Let θ be a ground substitution. We prove that I |= πθ.
Since I |= S, we have I |= 〈l1 ∨ . . . ∨ ln ∨ l〉. Thus there exists a literal m in
l1 ∨ . . . ∨ ln ∨ l such that I |= mσθ.
We distinguish two cases.
• If m = lj , for some j ∈ [1..n]. Since I |= S we have I |= [l′j | Φj ]. But
l′jσ = lcjσ, hence since I |= ljσθ we have I �|= l′jσθ. By definition of the
semantics of [l′j | Φj ] this implies that there exists a literal m′ ∈ Φj such
that I �|= m′σθ. But m′σ ∈ (Φ1 ∪ . . . ∪ Φn)σ, thus I |= πθ.

• If m = l then I |= lσθ thus I |= πθ.
– Clash. Assume that π is deduced by the Clash rule from a set of BTC-

formulae S. Then S must contain BTC-formulae of the form 〈l1∨. . .∨ln〉, [l′1 |
∅], . . . , [l′n | ∅] and there exists a unifier σ of (lc1, . . . , l

c
n) and (l′1, . . . , l

′
n). Let

I be an interpretation satisfying S. Let θ be a ground substitution. We have
I |= 〈l1 ∨ . . . ∨ ln〉, thus there exists j ∈ [1..n] such that I |= liσθ. By
definition we have I |= [l′i | ∅] for any i ∈ [1..n], thus I |= l′iσθ. But since σ
is a unifier of l′i and lci we have l′iσθ = lciσθ hence we get a contradiction
(S is unsatisfiable).



A Bottom-Up Approach to Clausal Tableaux 207

– Deletion. Assume that π is deduced by the Deletion rule from a set of BTC-
formulae S. Then π = [l | Φ]σ where S contains a BTC-formula [l | Φ∪{l′}],
where lcσ = l′σ.

Let θ be a ground substitution. If I |= lσθ then we have I |= πθ, by
definition. Thus we assume that I �|= lσθ. Then since I |= [l | Φ∪ {l′}], there
exists a literal m ∈ Φ ∪ {l′} such that I �|= mσθ. If m = l′ then we have
I �|= l′σθ, which is impossible since l′σ = lcσ and I �|= lσθ. Thus m �= l′ and
m must occur in Φ. Therefore we have I |= πθ.

If S is a set of clauses, we denote by 〈S〉 the set of BTC-formulae: 〈S〉 def= {〈C〉 |
C ∈ S}.
Theorem 1. (Soundness) Let S be a set of clauses. If 〈S〉 � 〈�〉 then S is
unsatisfiable.

Proof. Let I be an interpretation satisfying S. By definition we have I |= 〈S〉.
By Lemma 1 this implies that I |= 〈�〉 which is impossible.

Now we prove refutational completeness. We first show that BTC is complete for
sets of ground BTC-formulae, then we use a lifting lemma to extend this result
to the non ground level.

Let S be a set of ground clauses. Let l be literal. We denote by Sl the set of
clauses obtained by interpreting l to true. More formally, Sl is obtained from S
by removing each clause containing l and by deleting each occurrence of lc in
the remaining clauses.

In a first step, we ignore Condition 4 on the rule Link (we shall show afterwards
that all blocked clauses can be removed).

Lemma 2. Let S be a set of ground clauses. Let m be a literal occurring in a
clause in S. Let π be a BTC-formula such that 〈Sm〉 � π. Assume that 〈S〉 |=
[m | Ψ ]. If 〈S〉 �� π, then either π = 〈�〉 and Ψ �= ∅ or π is of the form [l | Φ]
and 〈S〉 � [l | Φ ∪ Ψ ].

Proof. The proof is by induction on the length of the derivation leading to π.
We distinguish several cases, according to the rule used to derive π.

– Link. If π is deduced by the rule Link, then π is of the form (l → k), where
〈Sm〉 � 〈l ∨ kc ∨ C ∨ lc1 ∨ . . . ∨ lcn〉, [l1 | φ1], . . . [ln | φn].

By the induction hypothesis, we have 〈S〉 � [lc1 | φ′1], . . . , [lcn | φ′n], where
φ′i is either φi or φi ∪ Ψ . By definition, l ∨ kc ∨C ∨ lc1 ∨ . . .∨ lcn occurs in Sm

(since it is non empty, and the rules cannot derive any BTC-formula of the
form 〈D〉 where D �= �), thus S contains either l ∨ kc ∨ C ∨ lc1 ∨ . . . ∨ lcn, or
l ∨ kc ∨ C ∨ lc1 ∨ . . . ∨ lcn ∨mc.

In both cases, since [m | Ψ ] is derivable, it is clear that the Link rule is
applicable on the above clause and from BTC-formulae deducible from S,
yielding (l → k).

– Transitivity. π is of the form (l1 → l3), where 〈Sl〉 � (l1 → l2), l2 �( l3 and
〈Sl〉 � (l2 → l3). By the induction hypothesis, 〈S〉 � (l1 → l2), (l2 → l3),
thus by Transitivity 〈S〉 � (l1 → l3).

– Leaf Detection. The proof is similar to the one of the previous case.



208 N. Peltier

– Propagation. π is of the form [l | Φ1 ∪ . . . ∪ Φn] where 〈Sm〉 � 〈l1 ∨ . . . ∨
ln ∨ l〉, [lc1 | Φ1], . . . , [lcn | Φn].

By the induction hypothesis, we have 〈S〉 � [lc1 | Φ′
1], . . . , [l

c
n | Φ′

n], where
for any i ∈ [1..n′], Φ′

i is either Φi or Φi ∪ Ψ .
Moreover, since l1 ∨ . . . ∨ ln ∨ l is non empty, it must occur in Sm.
Hence S contains either l1 ∨ . . . ∨ ln ∨ l, or l1 ∨ . . . ∨ ln ∨ l ∨mc.
• If S contains l1 ∨ . . .∨ ln ∨ l, then we have 〈S〉 |= 〈l1 ∨ . . .∨ ln ∨ l〉, hence

we can apply the Propagation rule, yielding: [l | Φ′
1 ∪ . . . ∪ Φ′

n]. If we
have Φ′

i = Φi for any i ∈ [1..n] then we have 〈S〉 � π. Otherwise, we have
〈S〉 � [l | Φ1 ∪ . . . ∪ Φn ∪ Ψ ].

• If S contains l1 ∨ . . . ∨ ln ∨ l ∨mc. Since 〈S〉 |= [m | Ψ ] we can apply the
rule Propagate, yielding [l | Φ′

1 ∪ . . . Φ′
n ∪ Ψ ] = [l | Φ1 ∪ . . . ∪ Φn ∪ Ψ ].

– Clash. In this case, we must have Ψ = ∅ (otherwise the proof is obvious).
Then the proof is similar to the previous one.

– Deletion. π must be of the form [l | Φ], where 〈Sm〉 � [l | Φ ∪ {lc}].
By the induction hypothesis, we have 〈S〉 � [l | Φ′], where Φ′ is either Φ∪{lc}
or Φ ∪ {lc} ∪ Ψ . In both cases, the Deletion rule applies and yields either
[l | Φ] or [l | Φ ∪ Ψ ] hence the proof is completed.

A BTC-formula π is said to be l-dominated if π is of the form (l → k)
or [l | Φ].

Lemma 3. Let S be a set of ground clauses, and let m be a maximal literal
occurring in a clause in S. For any literal l such that 〈S〉 �|= (l → m) and for
any l-dominated BTC-formula π, if 〈Sm〉 � π then 〈S〉 � π.

Proof. The proof is by induction on the length of the derivation leading to π.

– Link. If π is deduced by the rule Link, then π is of the form (l → k), where
〈Sm〉 � 〈l ∨ kc ∨ C ∨ lc1 ∨ . . . ∨ lcn〉, [l1 | φ1], . . . [ln | φn].
S contains either l∨ kc ∨C ∨ lc1 ∨ . . .∨ lcn or l∨ kc ∨C ∨ lc1 ∨ . . .∨ lcn ∨mc.

If the second case, since m is maximal, the Link rule is applicable yielding
(l → m), and the proof is completed.

Otherwise, assume that there exists a literal li in l1, . . . , ln such that
〈S〉 �� [li | φi]. We assume, w.l.o.g. that li is the greatest literal (according
to () having this property. By the induction hypothesis, we have 〈S〉 �
(li → m). If k ( li then the Link rule is applicable on the above clause,
yielding (l → k). Otherwise, the Link rule is applicable on the literals l and
lci , yielding (l → li). By Transitivity, this entails that 〈S〉 � (l → m) (since
li ≺ m) hence the proof is completed.

Now assume that there for any i ∈ [1..n], 〈S〉 � [li | φi]. Then the rule
Link is applicable and (l→ k) is deducible.

– Transitivity. π is of the form (l1 → l3), where 〈Sl〉 � (l1 → l2) and 〈Sl〉 �
(l2 → l3). Assume that 〈S〉 �|= (l1 → m). By the induction hypothesis,
〈S〉 � (l1 → l2). If 〈S〉 � (l2 → l3), then the proof follows by Transitivity.
Otherwise, by the induction hypothesis, we must have 〈S〉 � (l2 → m), hence
by Transitivity 〈S〉 � (l1 → m) which is impossible.

– Leaf Detection. The proof is similar to the previous one.



A Bottom-Up Approach to Clausal Tableaux 209

– Propagation. π is of the form [l | Φ1 ∪ . . . ∪ Φn] where 〈Sm〉 � 〈l1 ∨ . . . ∨
ln ∨ l〉, [lc1 | Φ1], . . . , [lcn | Φn].
Assume that 〈S〉 �� (l→ m).
S contains either l1 ∨ . . . ∨ ln ∨ l or l1 ∨ . . . ∨ ln ∨ l ∨mc. In the second

case, since m is maximal, (l → m) is deducible. Thus S � 〈l1 ∨ . . . ∨ ln ∨ l〉.
Assume that there exists a literal li in l1, . . . , ln such that 〈S〉 �� [lci | Φi].
W.l.o.g. we assume that li is the greatest literal having this property. Then
it is clear that the Link rule is applicable, yielding (l → lci ). Then we must
have 〈S〉 �� (lci → m) and by the induction hypothesis, 〈S〉 |= [lci | Φi] which
is impossible.

Thus we have 〈S〉 � [lc1 | Φ1], . . . , [lcn | Φn] and by Propagation 〈S〉 � π.
– Clash. The proof is obvious.
– Deletion. The proof is immediate.

Now we show that blocked clauses can be removed:

Lemma 4. Let S be a set of ground clauses. Let C be a clause that is blocked
in S. Then S \ {C} is satisfiable iff S is satisfiable.

Proof. Let M be a model of S \ {C}. If M |= S then the proof is completed.
Otherwise, M falsifies all literals in C.

By definition there exists a literal m such that C contains two literals l, k
with lc �S m and kc �S mc. We have M |= lc, kc. We have either M |= m
or M |= mc. By symmetry, we assume, w.l.o.g., that M |= m. Let M ′ be an
interpretation such that M ′ |= k and for any literal x �∈ {k, kc} M ′ |= x iff
M |= x. Since kc �S m

c we have m �= kc. Moreover, since M |= m and M �|= k,
we have m �= k. Thus, since M |= m, we deduce that M ′ |= m. Since M ′ |= k,
we have M ′ |= C. Assume that M ′ �|= S. Then there exists a clause D ∈ S such
that M ′ �|= D. Since M |= D, kc must occur in D. But kc �S m

c, thus (since
m �= k) m occurs in D. But M ′ |= m hence M ′ |= D, which is impossible.

Lemma 5. Let S be a finite set of ground clauses. If S is unsatisfiable then
〈S〉 � 〈�〉.

Proof. A set of clauses S is said to be minimally unsatisfiable iff S is unsatisfiable
and if for any clause C ∈ S, S \{C} is satisfiable. We prove, by induction on the
number of distinct literals occurring in S, that if S is minimally unsatisfiable,
then 〈S〉 � 〈�〉 and for any clause l1 ∨ . . . ∨ ln in S, we have 〈S〉 � [lci | ∅], for
i ∈ [1..n]. By Lemma 4, we may assume that all the clauses in S are non-blocked.

Let l be a maximal literal in S. Slc and Sl are unsatisfiable and contain strictly
less literals than S. Let S′ be the minimally unsatisfiable subset of Slc and let
S′′ be the minimally unsatisfiable subset of Sl. Obviously, if S′ ⊆ S or S′′ ⊆ S
then we have S′ = S or S′′ = S thus l (or lc) does not occur in S which is
impossible. Thus we have S′ �⊆ S and S′′ �⊆ S.
S′ contains a clause l1 ∨ . . . ∨ ln such that l ∨ l1 ∨ . . . ∨ ln occurs in S. By

the induction hypothesis, for any i ∈ [1..n], we have 〈Slc〉 � [lci | ∅]. Similarly S′′

contains at least one clause m1 ∨ . . .∨mk such that lc ∨m1 ∨ . . .∨mk occurs in
S. By the induction hypothesis 〈Sl〉 � [mc

i | ∅] for any j ∈ [1..k].



210 N. Peltier

If [l | ∅] or [lc | ∅] is deducible, then since Sl � 〈�〉 and Slc � 〈�〉, we must
have 〈S〉 � 〈�〉 by Lemma 2. Otherwise, we distinguish two cases.

– Assume that 〈S〉 �� [l | l]. Then we have either 〈S〉 �� (l → lc), or 〈S〉 ��
(lc → l) or l �∈ Γ and 〈S〉 � [lc | lc] (by the rule Leaf Detection). The case
〈S〉 � [lc | lc] is handled below (replacing lc by l). Thus we assume, w.l.o.g.
that 〈S〉 �� (l → lc).

Assume that there exists a literal li in l1, . . . , ln such that 〈S〉 � (lci → lc).
Let li be the greatest literal having this property. For any j such that lj ( li
we have 〈S〉 �� (lj → lc) thus by Lemma 3 〈S〉 � [lcj | ∅]. Then the Link
rule applies yielding (l → lci ), and by Transitivity (since l ( li) we have
〈S〉 � (l → lc) which is impossible.

Thus there is no literal li in l1, . . . , ln such that 〈S〉 � (lci → lc), hence
by Lemma 3, this implies that for any i ∈ [1..n], 〈S〉 � [lci | ∅]. Thus by
Propagation we get [l | ∅].

– Assume that 〈S〉 � [l | l]. We have 〈Slc〉 � [lci | ∅], for any i ∈ [1..n]. By
Lemma 2 since 〈S〉 � [l | l], this implies that 〈S〉 � [lci | Ψi] (i = 1, . . . , n)
where Ψi is either ∅ or {l}. By propagation, we get 〈S〉 � [l | Ψ ], where
Ψ =

⋃n
i=1 Ψi. By deleting, this gives 〈S〉 � [l | ∅].

Now consider an arbitrary clause D in S. It is clear that either D occurs in
S′∩S′′ or D is of the form l∨D′ where D′ ∈ S′ or D is of the form lc∨D′′ where
D′′ ∈ S′′. If D occurs in S′ ∩ S′′ then for any m ∈ D, we have 〈S′〉 � [mc | ∅].
Since S � [l | ∅] this implies that 〈S〉 � [mc | ∅]. Then same holds if D is of the
form l∨D′ or lc ∨D′′ where D′ ∈ S′ (resp. D′′ ∈ S′′), since we have shown that
〈S〉 � [lc | ∅], [l | ∅].

The non ground case is obtained by using a lifting lemma very close to the ones
used for resolution calculi.

Lemma 6 (Lifting Lemma). Let S be a set of BTC-formulae. Let S′ a set of
ground instances of S. If S′ � π, then there exist a BTC-formula π′ and a
substitution σ such that S � π′ and π = π′σ.

Corollary 1 (Refutational Completeness). Let S be a set of clauses. If S is
unsatisfiable then 〈S〉 � 〈�〉.

We can also use the information deduced during the search in order to simplify
the considered clause set. If a BTC-formulae of the form [l | ∅] is generated,
where l subsumes a clause C in S, then C is a logical consequence of [l | ∅] thus
〈C〉 and all the BTC-formulae deduced from 〈C〉 (and their descendants) can be
deleted. It is obvious that this strategy preserves refutational completeness (since
the number of clauses strictly decreases at each application of the simplification
rule). Of course, this strategy may introduce some redundancy, because the same
BTC-formula can be deduced |S| times, where |S| is the size of the initial clause
set (still if the number of deducible BTC-formulae is polynomial w.r.t. to |S|
then it is still polynomial when the deletion strategy is used).



A Bottom-Up Approach to Clausal Tableaux 211

5 Complexity

A good way of assessing the efficiency of a proof procedure (beside practical
experimentations) is to investigate its behavior on some particular propositional
classes.

In this section we prove that BTC (more precisely, the algorithm obtained
by the non deterministic application of the above inference rules on the set of
formula 〈S〉, where S denotes the set of clauses at hand) runs in polynomial time
for three classes of propositional clause sets: the class of q-Horn renamable
clauses, the class of ordered renamable Horn clauses and the class S0

(with renaming). For the last class, an appropriate strategy is needed, defined
by the pair (, Γ . All these classes are distinct strict extensions of the Horn
class. These results are of course interesting by themselves, because it is useful
to have a uniform procedure for all these classes, but also because they provide
some hints of the power of our method in the general case (by showing how our
approach can keep the search space compact). To the best of our knowledge,
there is no other proof procedure sharing these properties.

A renaming r is a function mapping each literal l to either l or lc, such that
r(lc) = r(l)c. A renaming can be extended to clauses and clause sets as follows:
r(l1 ∨ . . . ∨ ln) def= r(l1) ∨ . . . ∨ r(ln), and r(S) def= {r(C) | C ∈ S}.

A clause is Horn if it contains at most one positive literal and Krom if it
contains at most most two literals.

5.1 q-Horn Class

The class of q-Horn clauses has been introduced in [7]. Let X be a set of atoms.
A literal is said to be on X , if either l ∈ X or lc ∈ X .

Definition 1. Let S be a set of ground clauses. S is q-Horn if there exists two
sets of atoms X and Y such that all the clauses C in S satisfy one of the following
conditions:

– C is a Horn clause and all literals in C are on X.
– All literals in C are on X ∪ Y , C contains no positive literal on X and at

most two literals on Y .

In particular, any set of Horn clauses and any set of Krom clauses is q-Horn. A
clause set S is said to be q-Horn renamable iff there exists a renaming r such
that r(S) is q-Horn.

Theorem 2. Let S be a q-Horn renamable set of ground clauses. The number of
BTC-formulae π such that 〈S〉 � π is at most o(a3), where a denotes the number
of distinct atoms occurring in S.

Proof. Let r be a renaming r such that r(S) is q-Horn. Let X,Y be the corre-
sponding sets of atoms. We first show that we can infer no BTC-formula of the
form (p→ l) where r(p) ∈ X and r(l) �∈ X .

Let π = (p→ l) be such a BTC-formula. We assume, w.l.o.g., that π is chosen
in such a way that the derivation leading to π is minimal.



212 N. Peltier

– Assume that π is generated by Transitivity. Then there exists two BTC-
formulae of the form (p → k) and (k → l) such that 〈S〉 � (p → k) and
〈S〉 � (k → l). By definition of π, r(k) ∈ X (otherwise, (p → k) would
satisfy the above property hence the derivation leading to π would not be
minimal). Thus (k → l) satisfies the above property which is impossible.

– Otherwise, π is generated by Link. Then there exists in S a clause of the
form p∨ lc∨C. Since r(p) ∈ X , r(p∨ lc ∨C) is Horn and contains no literals
on Y . Thus r(l) ∈ X .

We now show (by induction on the length of the derivation) that if 〈S〉 �
(l → k) and l is a literal on Y and k a literal on X , then r(k) is positive.

– Assume that (l → k) is generated by Transitivity. Then 〈S〉 � (l → l′), (l′ →
k). If l′ is a literal on Y , then by the induction hypothesis, r(k) is positive. Oth-
erwise, l′ must be positive. Then by the above property, r(k) is an atom onX .

– Otherwise, (l→ k) is generated by Link. Then S contains a clause l∨kc∨C.
Since l is on Y and k is on X , r(k) must be positive.

Then, we show, by induction on the derivation, that if a BTC-formula [l | Φ] is
generated, then either r(l)c ∈ X and Φ contains at most two literals (from Y ) or
r(l) ∈ Y and Φ = ∅ or l is on Y and Φ is of the form {k} where k is a literal on Y .

– If [l | Φ] is generated by the rule Leaf Detection, then by definition we have
Φ = {l} where 〈S〉 � (l → lc), (lc → l). If l is on Y then the proof is
completed. Thus we assume that l is on X . If r(l) is positive, then we cannot
have 〈S〉 � (l → lc) since r(lc) �∈ X . Similarly, if r(l) is negative, then we
have 〈S〉 �� (lc → l).

– If [l | Φ] is obtained by the rule Propagate, then there exists a clause of the
form l∨ l1∨ . . .∨ ln such that 〈S〉 � [lc1 | Φ1], . . . , [lcn | Φn] where Φ =

⋃n
i=1 Φi.

We distinguish two cases.
• Either l∨ l1 ∨ . . .∨ ln contains no literal on Y . Then r(l ∨ l1 ∨ . . .∨ ln) is

Horn. If r(l) is positive then all the r(li)’s are negative. By the induction
hypothesis, Φi must be empty, thus Φ is empty.

If r(l) is negative, then there exists at most one i ∈ [1..n] such that
r(li) is positive. By the induction hypothesis, there exists at most one
i ∈ [1..n] such that Φ1, . . . , Φn is non-empty and Φi contains at most two
literals in Y . Thus Φ contains two literals in Y .

• Or r(l∨ l1∨ . . .∨ ln) contains at most two literals on Y and only negative
literals on X . If l is on X , then r(l) is negative. l1, . . . , ln contains (at
most) two literals on Y , say l1, l2. By the induction hypothesis, all the
Φi for i = 3, . . . , n are empty. Moreover, we have Φ1 = {k1}, Φ2 = {k2}
where k1, k2 are on Y . Thus Φ contains at most two literals in Y .

Otherwise, l is on Y . Moreover, all the literals onX occurring in r(l1),
. . . , r(ln) are negative and there is at most one literal on Y occurring in
l1, . . . , ln. Thus there is at most one i ∈ [1..n] such that Φi is non empty
and Φi must be a singleton. Thus Φ is either empty or a singleton.

Therefore, all the BTC-formulae that can be generated (beside 〈�〉) are either
of the form (l → k) where l, k are literals or of the form [l | Φ] where l is a literal



A Bottom-Up Approach to Clausal Tableaux 213

and Φ is a set of literals of cardinality 2 or less. Obviously, there exist at most
o(a3) such formulae, where a denotes the number of ground atoms.

5.2 Ordered Clauses

We now consider another extension of the Horn class, the class of ordered clauses
[4]. It strictly contains some other polynomial classes such as the Simple Enlarged
Horn clauses [16] or the Simple Extended Horn clauses [9] (see also [15]).

We denote by occS(l) the set of clauses C ∈ S such that l occurs in S. We
write l �S k if occS(lc) ⊆ occS(kc). Note that if l �S k and l �= k, then lc �S k,
by definition of �S .

A literal is called bounded in C (w.r.t. S) if either occS(lc) = ∅ or if there
exists a literal k ∈ C such that l �= k and l �S k. A non bounded literal is said
to be free. A set of clauses S is said to be ordered if each clause in S contains at
most one free positive literal. A clause set S is said to be ordered renamable iff
there exists a renaming r such that r(S) is ordered.

Theorem 3. Let S be a ordered renamable set of ground clauses. Then the
number of BTC-formulae π such that 〈S〉 � π is at most o(a2) where a denotes
the number of ground atoms in S.

Proof. Let r be a renaming such that r(S) is ordered. We show that there is no
pair of literals p, q such that 〈S〉 � (p→ ¬q) and r(p), r(q) are positive.

It is easy to see that the only rule that can generate the first literal of this
form is Link. Assume that there exists a clause p ∨ q ∨ C from which (p → ¬q)
can be deduced. Then since C is ordered, either r(p) or r(q) must be bounded.
By the application conditions on the rule Link, p ∨ q ∨ C is non blocked. We
distinguish several cases.
– occr(S)(r(q)c) = ∅. Then occS(qc) = ∅, thus qc �S p holds by definition of

�S . Since p �S p, this entails that C is blocked and thus contradicts the
application condition of Link.

– occr(S)(r(p)c) = ∅. Then pc �S q holds. Since q �S q, C is blocked, which is
impossible.

– There exists a literal s in C, such that r(s) is positive, s is distinct from
p, q and r(q) �r(S) r(s). Then it is clear that this implies (¬q) �S s. Since
s �S s, this entails that C is blocked.

– There exists a literal s in C such that r(s) is positive, distinct from p, q and
r(p) �r(S) r(s). Then we have (¬p) �S s, and C is blocked.

– r(p) �S r(q). Then we have (¬r(p)) �r(S) r(q), hence (¬p) �S q, thus C is
blocked.

– r(p) �r(S) r(p). Then (¬q) �S p, hence C is blocked.
– Otherwise, r(p) and r(q) are both free in r(S), which is impossible since r(C)

is ordered and r(p), r(q) are positive.
Therefore, no BTC-formula of the form (p→ ¬p), where r(p) is positive, can be
deduced and the Leaf Detection rule is never applied. This entails that for any
deducible BTC-formula of the form [l | Φ], we have Φ = ∅. Thus there is only
o(a2) possible BTC-formulae, where a denotes the number of distinct ground
atoms in S.



214 N. Peltier

5.3 The Class S0

The class S0 is introduced in [17]. We slightly extend the definition to handle
renaming. A set of clauses {C1, . . . , Cn} belongs to the class S0 if there exists a
renaming r such that the following holds:

1. For any i = 1, . . . , n, Ci = Pi ∪Hi, where r(Hi) is a Horn clause and r(Pi)
is a set of positive literals.

2. For any i = 1, . . . , n− 1, Pi+1 ⊆ Pi.

In contrast to the previous cases, in order to handle this class properly we
need to impose additional constraints on the strategy. We assume that ( and
Γ satisfy the following properties: For any i ∈ [1..n], if p ∈ Pi and q �∈ Pi, then
p ( q; and p ∈ Γ iff r(p) is positive.

Theorem 4. Let S be a set of ground clauses in S0. Then the number of BTC-
formulae π such that 〈S〉 � π is at most o(a2) where a denotes the number of
ground atoms in S.

Proof. (Sketch) We show that there is no pair of literals p, q such that [p | {p}]
and [q | {q}] are both derivable, and either p �= q or p �∈ P1. The proof is by
induction on the length of the derivation. Assume that such a pair of literals
exists. By symmetry, we assume p ) q.

By the above strategy, r(p) and r(q) are both positive. By definition [p | {p}]
must have been deduced by the rule Link. Thus (p → ¬p) must be derivable.
By definition, this implies that there exists a sequence of literals l1, . . . , ln such
that l1 = p, ln = ¬p and for any i = 1, . . . , n− 1, (li → li+1) is deducible from
Γ by applying the rule Link. Moreover, by the application condition on the rule
Transitivity we have li ≺ p, for any i ∈ [2..n − 1]. Let i be the first index in
[1..n] such that r(li) is negative. Let a = li−1, b = lci . By definition, S contains
a clause Cj = (a ∨ b ∨D) such that (a→ ¬b) is derivable from 〈Cj〉 using Link.
By definition, a or b must be in Pj . Moreover, a, b ) p. Thus p is in Pj ⊆ P1.
Then this implies that q ( p, hence q ∈ Pj . Therefore, q must occur in Cj .
By definition of the rule Link, Γ contains a BTC-formula of the form [qc | Φ].
Since [q | q] is deducible, Φ cannot be empty (otherwise [qc | ∅] would have
been deduced before [q | q] which is impossible because due to deletion strategy
introduced at the end of Section 4 any literal of the form (lc → . . .) would be
deleted). By the induction hypothesis, we have Φ ⊆ {q}. But q occurs in Cj

which is impossible (by definition of the Link rule).
This implies that, at a given point, only one BTC-formula of the form [l | {l}]

exists. Thus the constraint parts of the BTC-formulae contain at most one literal
and at most o(a2) distinct BTC-formulae can be generated.

6 Conclusion

A new proof procedure for first-order logic, called BTC, has been presented. Its
soundness and refutational completeness has been proven. We have also investi-
gated the complexity of BTC on some propositional classes and showed that it
is polynomial for all these classes.



A Bottom-Up Approach to Clausal Tableaux 215

A natural continuation of this work is to implement this procedure in order to
estimate its practical performances. The extension of this approach to first-order
logic with equality should also be considered, and refinements can be defined
in order to prune the search space (for instance it is obvious that a form of
subsumption can be used to delete redundant BTC-formulae).

References

1. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper-tableaux. In: Or�lowska, E.,
Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, Springer,
Heidelberg (1996)

2. Beckert, B.: Depth-first proof search without backtracking for free-variable clausal
tableaux. Journal of Symbolic Computation 36, 117–138 (2003)

3. Beckert, B., Posegga, J.: Lean-TAP: Lean tableau-based deduction. Journal of
Automated Reasoning 15(3), 339–358 (1995)

4. Benoist, E., Hébrard, J.J.: Ordered formulas. Technical Report 14, Université de
Caen, Les cahiers du CGREYC (1999)

5. Bibel, W.: On matrices with connections. Journal of the Association of Computing
Machinery 28, 633–645 (1981)

6. Billon, J.-P.: The disconnection method: a confluent integration of unification in
the analytic framework. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D.
(eds.) TABLEAUX 1996. LNCS, vol. 1071, Springer, Heidelberg (1996)

7. Boros, E., Crama, Y., Hammer, P.L.: Polynomial-time inference of all valid implica-
tions for Horn and related formulae. Ann. Mathematics and Artificial Intelligence 1,
21–32 (1990)

8. Bry, F., Yahya, A.: Minimal model generation with positive unit hyper-
resolution tableaux. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.)
TABLEAUX 1996. LNCS, vol. 1071, Springer, Heidelberg (1996)

9. Chandru, V., Hooker, J.N.: Extended horn sets in propositional logic. J.
ACM 38(1), 205–221 (1991)

10. Giese, M.: Incremental Closure of Free Variable Tableaux. In: Goré, R.P., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, Springer, Heidelberg
(2001)

11. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, Elsevier Science vol. I, ch. 3, pp. 100–178 (2001)

12. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. pp.
2015–2112 (2001)

13. Letz, R., Stenz, G.: Proof and model generation with disconnection tableaux.
In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250,
Springer, Heidelberg (2001)

14. Peltier, N.: Some techniques for branch-saturation in free-variable tableaux. In:
Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, Springer,
Heidelberg (2004)

15. Schlipf, J.S., Annexstein, F.S., Franco, J.V., Swaminathan, R.P.: On Finding Solu-
tions for Extended Horn Formulas. Information Processing Letters 54(3), 133–137
(1995)

16. Swaminathan, R.P., Wagner, D.K.: The arborescence-realization problem. Discrete
Appl. Math 59(3), 267–283 (1995)

17. Yamasaki, S., Doshita, S.: The satisfiability problem for a class consisting of Horn
sentences and some non-Horn sentences in propositional logic. Information and
Control 59, 1–12 (1983)



Differential Dynamic Logic for

Verifying Parametric Hybrid Systems�

André Platzer

University of Oldenburg, Department of Computing Science, Germany
Carnegie Mellon University, Computer Science Department, Pittsburgh, PA

platzer@informatik.uni-oldenburg.de

Abstract. We introduce a first-order dynamic logic for reasoning about
systems with discrete and continuous state transitions, and we present
a sequent calculus for this logic. As a uniform model, our logic supports
hybrid programs with discrete and differential actions. For handling real
arithmetic during proofs, we lift quantifier elimination to dynamic logic.
To obtain a modular combination, we use side deductions for verifying
interacting dynamics. With this, our logic supports deductive verifica-
tion of hybrid systems with symbolic parameters and first-order defin-
able flows. Using our calculus, we prove a parametric inductive safety
constraint for speed supervision in a train control system.

Keywords: dynamic logic, sequent calculus, verification of parametric
hybrid systems, quantifier elimination.

1 Introduction

Frequently, correctness of a real-time or hybrid system [16] depends on the choice
of parameters [9, 12, 24]. Such parameters naturally arise from the degrees of
freedom of how a part of the system can be instantiated or how a controller
can respond to input. They include both external system parameters like the
braking force of a train, and control parameters of internal choice like when to
start braking before approaching an open gate or a preceding train [9].

Symbolic parameters occurring in system dynamics raise a couple of chal-
lenges. Even simple parametric flows and guards are non-linear : With parame-
ter b, the flow constraint 2x + by ≥ 0 is an algebraic inequality but not linear.
For this reason, we cannot use approaches with linear arithmetic like the model
checkers HyTech [1], or PHAVer [14]. More generally, Davoren and Nerode [11]
argue that, unlike deductive methods, model checking [1,7, 14, 16] does not sup-
port free parameters. Furthermore, correctness of parametric systems typically
depends on a constraint on the free parameters, which is not always known a

� This research was supported by a fellowship of the German Academic Exchange
Service (DAAD) and by the German Research Council (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS, see www.avacs.org).

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 216–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Differential Dynamic Logic for Verifying Parametric Hybrid Systems 217

priori but needs to be identified during the analysis. It is, however, quite compli-
cated to synthesise such general symbolic constraints from the concrete values
of a counterexample trace produced by a model checker. Even without param-
eters, there are limitations of non-symbolic techniques for handling continuous
flows [24].

To overcome these issues, we propose a fully symbolic technique following
a deductive approach. We introduce a logic for verifying hybrid systems with
parameters. As a basis we use first-order logic, which has widely proven its
power and flexibility in handling symbolic parameters as logical variables. For
reasoning about state transitions, our logic further extends dynamic logic.

First-order dynamic logic (DL) [15] is a successful approach for reasoning
about (discrete) state changes [3,4, 15, 18]. Like model checking, first-order DL
can analyse the behaviour of operational system models [21,22]. Yet, DL calculi
accept parameters: they verify systems by deductive proof rather than a more
enumerative and graph-theoretic analysis of the (abstract) state space as in
model checking [7]. In addition, operational models are internalised, and DL is
closed under logical operators. Thus, DL can analyse the relationship between
multiple systems [21,23], which is useful for compositional verification.

Since hybrid systems are subject to both continuous evolution and discrete
state change, we add continuous state changes to discrete DL. As a uniform
model for hybrid systems, our logic introduces hybrid programs with discrete
assignments and differential actions. The resulting first-order dynamic logic is
called differential dynamic logic (dL). It has been motivated and proposed (with-
out a formal introduction) in our preliminary work [21].

In [22,23], we have introduced logics that extend the basic ideas of [21] into
different directions. In [23], we have presented a logic with nominals to investigate
compositionality. In [22], we have introduced a temporal logic and a calculus that
reduces temporal statements to non-temporal formulas. The calculi of [22, 23]
reduce their respective extensions to dL. In this paper, we give a proof system
for dL itself, which can be combined with the extensions in [22,23].

We show how interacting discrete and continuous dynamics can be verified
constructively by integrating quantifier elimination into our calculus to handle
the resulting arithmetic. Moreover, this combination is modular in the sense
that we directly combine quantifier elimination and dynamic logic side by side.
Using side deductions, we achieve such a modular combination even though both
quantifiers and dynamic modalities interact by affecting the values of variables.

As an important modelling characteristic of hybrid systems, we generalise
differential actions to differential equations that can be restricted to first-order
invariant regions. Moreover, we show how induction can be integrated.

The first contribution of this paper is a formal introduction of our logic dL.
The main contribution is a full calculus for verifying interacting discrete and
continuous dynamics including the resulting arithmetic. For this, we present a
modular combination of quantifier elimination with a sequent calculus. Using
our calculus, we prove safety of speed supervision in train control [9, 12] and
synthesise the required parametric induction invariant.



218 A. Platzer

Hybrid Systems. The behaviour of safety-critical systems typically depends
on both the state of a discrete controller and continuous physical quantities.
Hybrid systems are mathematical models for dynamic systems with interacting
discrete and continuous behaviour [11,16]. Their behaviour combines continuous
evolution (called flow) characterised by differential equations and discrete jumps.

Dynamic Logic. The principle of dynamic logic is to combine system opera-
tions and correctness statements about system states within a single specification
language (see [15] for a general introduction for discrete systems). By permit-
ting system operations α as actions of a labelled multi-modal logic, dynamic
logic provides formulas of the form [α]φ and 〈α〉φ, where [α]φ expresses that
all (terminating) runs of system α lead to states in which condition φ holds.
Likewise, 〈α〉φ expresses that there is at least one (terminating) run of α af-
ter which φ holds. In dL, hybrid programs play the role of α. In particular, dL
extends discrete dynamic logic [15] such that α can display continuous evolution.

Related Work. Several approaches [2, 13, 19,20] use quantifier elimination [8]
in first-order real arithmetic for model checking hybrid automata. Thus, we use
the same decision procedure as a basis for handling arithmetic of non-linear
flows. We generalise these results to a deductive calculus for improved handling
of free parameters. As a more uniform model that is amenable to compositional
symbolic processing by calculi, we use hybrid programs rather than automata.

Zhou et al. [27] extended duration calculus with mathematical expressions in
derivatives of state variables. They use a multitude of rules and an oracle that
requires external mathematical reasoning about derivatives and continuity.

Rönkkö et al. [25] presented a guarded command language with differential
relations and gave a semantics in higher-order logic with built-in derivatives.
Without providing a means for verification of this higher-order logic, the ap-
proach is still limited to providing a notational variant of classical mathematics.

Rounds [26] defined a semantics in set theory of a “spatial” logic for a hybrid
π-calculus. Without giving a calculus for that logic, this approach is not suitable
for verification yet. Further, the automatic proving potential is limited by the
large number of very expressive operators in this formalism.

Boulton et al. [6] introduced a Hoare calculus for gain and phase shift prop-
erties of a special case of block diagrams. It requires manual reasoning about
complicated expressions with square roots, rational and trigonometric functions.
The authors do not give a soundness result or formal semantics.

Davoren and Nerode [10,11] extended the propositional modal μ-calculus with
a semantics in hybrid systems and examine topological aspects. They provided
Hilbert-style calculi to prove formulas that are valid for all hybrid systems si-
multaneously. Thus, only limited information can be obtained about a particular
system: In propositional modal logics, system behaviour needs to be axiomatised
in terms of abstract actions a, b, c of unknown effect, see, e.g. [21].

The strength of our logic primarily is that it is a first-order dynamic logic:
It handles actual operational models of hybrid systems like x := x+ y; ẋ = 2y
rather than abstract propositional actions of unknown effect. Further, we provide



Differential Dynamic Logic for Verifying Parametric Hybrid Systems 219

a calculus for actually verifying hybrid programs with free parameters and first-
order definable flows, i.e., flows that are definable in first-order arithmetic. For
verifying the coordination level of train dynamics, which we use as an example,
first-order definable flows are sufficient [9]. First-order approximations of more
general flows can be used according to [2,24].

Structure of this Paper. After introducing syntax and semantics of the differ-
ential logic dL in Section 2, we introduce a sequent calculus in Section 3, which
can be used for verifying parametric hybrid systems in dL, and prove soundness.
In Section 4, we prove an inductive safety property in train control using the dL
calculus. Finally, we draw conclusions and discuss future work in Section 5.

2 Syntax and Semantics of Differential Logic

As a uniform model for hybrid systems, our logic introduces hybrid programs,
which generalise real-time programs [17] to hybrid change. They are more ame-
nable to step-wise symbolic processing by calculus rules than graph structures
of automata. Since hybrid automata [1] can be embedded, there is no loss of
expressivity. Hybrid programs have a simple compositional semantics. With this
basis, we can construct a compositional calculus that reduces verification of
system properties to proving properties of its parts.

The differential logic dL is a dynamic logic for reasoning about programs with
three basic characteristics to meet the requirements of hybrid systems:

Discrete jumps. Projections in state space are represented as instantaneous as-
signments of values to state variables. With this, mode switches like mode := 4
or signal := 1 can be expressed with discrete jumps, as well as resets z := 0 or
adjustments of control variables like z := z − 2.

Continuous evolution. Continuous variation in system dynamics is represented
with differential equations as evolution constraints. For example, the evolution
of a train with constant braking can be expressed with a system action for the
differential equation z̈ = −b with second time-derivative z̈ of z. Similarly, the
effect of z̈ = −b& z ≥ 5 is an evolution that is restricted to always remain within
the region z ≥ 5, i.e., to stop braking at the latest when z < 5. Such an evolution
can stop at any time within z ≥ 5, it can even continue with transient grazing
along the border z = 5, but it is not allowed to proceed when it enters z < 5.

Regular combinations. Discrete and continuous transitions can be combined to
form hybrid programs using regular expression operators (∪, ∗, ;) as structured
behaviour of hybrid systems. For example, mode := 4 ∪ z̈ = −b describes a train
controller that can either choose to switch its state to an alert mode (4) or initi-
ate braking by the differential equation z̈ = −b, by a nondeterministic choice (∪).
In conjunction with other regular combinations, control constraints can be ex-
pressed using conditions like ?z ≥ 9 as guards for the system state.



220 A. Platzer

2.1 Syntax of dL
Terms and Formulas. The formulas of dL are built over a finite set V of real-
valued variables and a fixed signature Σ of function and predicate symbols. For
simplicity, the signature Σ is assumed to contain exclusively the usual function
and predicate symbols for real arithmetic, such as 0, 1,+, ·,=,≤, <,≥, >.

The set Trm(V ) of terms is defined as in classical first-order logic yield-
ing polynomial expressions. The set Fml(V ) of formulas of dL is defined as
common in first-order dynamic logic [15]. That is, they are built using proposi-
tional connectives ∧,∨,→,↔,¬ and quantifiers ∀, ∃ (first-order part). In addi-
tion, if φ is a dL formula and α a hybrid program, then [α]φ, 〈α〉φ are formulas
(dynamic part).

Hybrid Programs. In dL, elementary discrete jumps and continuous evolutions
interact using regular control structure to form hybrid programs.

Definition 1 (Hybrid programs). The set HP(V ) of hybrid programs is
inductively defined as the smallest set such that:

– If x ∈ V and θ ∈ Trm(V ), then (x := θ) ∈ HP(V ).
– If x ∈ V , θ ∈ Trm(V ), and χ ∈ Fml(V ) further is a quantifier-free first-order

formula, then (ẋ = θ&χ) ∈ HP(V ).
– If χ ∈ Fml(V ) is a quantifier-free first-order formula, then (?χ) ∈ HP(V ).
– If α, γ ∈ HP(V ) then (α; γ) ∈ HP(V ).
– If α, γ ∈ HP(V ) then (α ∪ γ) ∈ HP(V ).
– If α ∈ HP(V ) then (α∗) ∈ HP(V ).

The effect of x := θ is an instantaneous discrete jump in state space. That
of ẋ = θ&χ is an ongoing continuous evolution controlled by the differential
equation ẋ = θ while remaining within the region described by χ. The evolution
is allowed to stop at any point in χ. It is, however, obliged to stop before it
leaves χ. For unrestricted evolution, we abbreviate ẋ = θ& true by ẋ = θ. The
dL semantics allows differential equations with arbitrary terms θ and arbitrary
occurrences of x or other variables in θ. As, e.g., in [13,20], however, our calculus
assumes that ẋ = θ has a first-order definable flow or approximation. See [2,24]
for flow approximation techniques. Extensions of dL and its calculus to systems
of differential equations and higher-order derivatives are accordingly.

The ?φ action is used to define conditions. Its semantics is that of a no-op if φ
is true in the current state, and that of a failure divergence blocking all further
evolution, otherwise. The non-deterministic choice α∪γ, sequential composition
α; γ and non-deterministic repetition α∗ of hybrid programs are as usual. They
can be combined with ?φ to form more complicated control structures, see [15].

In dL, there is no need to distinguish between discrete and continuous vari-
ables or between system parameters and state variables, as they share the same
uniform semantics. For instance, ∃z [ż = −z]z ≤ 5 expresses that there is a choice
of the initial value for z (which could be a parameter) such that after all evolu-
tions of z along ż = −z, the outcome of the state variable z will be at most 5.
For pragmatic reasons, an informal distinction can improve readability. Formal
distinctions of quantified variables and state variables [4] carry over to dL.



Differential Dynamic Logic for Verifying Parametric Hybrid Systems 221

2.2 Semantics

Hybrid systems evolve along a piecewise continuous trajectory in n-dimensional
space as time passes (see Fig. 1 for a possible evolution with one system variable x
over time t). The discontinuities are caused by discrete jumps in the state space
while the segments of continuous evolution are governed by differential equations.
Concerning semantics of hybrid system models, there is a variety of slightly
different formalisations. Since the interplay of discrete change with continuous
evolution raises peculiar subtleties, we start with a motivation that highlights
the advantages of our choice of semantics for dL.

t

x

ẋ=−2x

0.2

1
ẋ=f(x)

1

2

g

ẋ=h(x)

0.6

Fig. 1. Discontinuous hybrid trajectory

Motivation. Consider the scenario in
Fig. 1. The semantics has to restrict
the behaviour of the hybrid system
during the continuous evolution phase,
e.g., on the interval [1, 2], to respect
the differential equation ẋ = f(x).
Yet, the discrete jump at time 2 will
necessarily lead to a discontinuity in
the overall system trajectory. Now, an
overall system trajectory function g
(where g(t) records the value of x at
time t) can only assume a single value at time 2, say g(2) = 0.6. Hence, the evo-
lution of g will only be continuous on the inner interval (1, 2). Still, the evolution
along ẋ = f(x) has to be constrained to possess a left -continuous continuation at
time 2 towards a projected value of 1, although this value will never be assumed
by g. This complicates the well-posed definition of semantics on the basis of an
overall system trajectory. Note that leaving out this condition of left-continuity
would lead to a total transition relation with all states being reachable, which,
of course, would not reflect the proper system behaviour either.

In contrast to this, the dL semantics inflates points in time with instantaneous
discrete progression by associating an individual trajectory for each continu-
ous evolution or instant jump phase. Hence, the trajectories remain continuous
within each differential evolution phase, with discontinuities isolated purely in
discrete jump transitions. Thereby, the dL semantics directly traces the succes-
sion of values assumed during the hybrid evolution, even if they belong to states
which occur without model time passing in between. In addition to the fact
that those so-called super-dense time effects naturally occur at mode switches
between differential evolutions, they are necessary for joint mode switches of
several system variables at once, like in x := 3; y := 5. We argue that the dL
semantics is much simpler to define than for approaches with a global overall
system trajectory as, for example, in [9].

Formal Semantics. The interpretations of dL consist of states (worlds) that
are first-order structures over the reals, with state variables progressing along a
sequence of states. A potential behaviour of a hybrid system corresponds to a
sequence of states that contain the observable values of system variables during



222 A. Platzer

its hybrid evolution. More precisely, the semantics of a single (compound or
elementary) system action is captured by the state transitions that are possible
using this action. For discrete jumps α this transition relation ρ(α) holds for
pairs of states that satisfy the jump constraint. In case of continuous evolutions,
the transition relation holds for pairs of states that can be interconnected by
a continuous system flow that respects the differential equation, thereby hiding
the intermediate flow details from the logic. To retain a manageable logic and
calculus, it is important to hide as much as possible of the branching factor of
continuous evolution from the logic. Since function and predicate symbols are
interpreted as usual for real arithmetic, we omit first-order structures from the
notation and focus on states, i.e, assignments of variables with real values.

Definition 2 (State). A state is a map ν :V → R; the set of all states is de-
noted by Sta(V ). An interpretation is a non-empty set of states that is closed
under hybrid program operations (see Def. 4).

Further, we use ν[x �→ d] to denote the semantic modification of a state ν that is
identical to ν except for the interpretation of the symbol x, which is d ∈ R. With
the exception of continuous evolution, the semantics, ρ(α), of hybrid program α
as a state transition structure in dL is as customary in dynamic logic (Def. 4).

Definition 3 (Valuation of terms and formulas). For terms and formulas,
the valuation val(ν, ·) with respect to state ν is defined as usual for first-order
modal logic (e.g. [15]), i.e., using the following definitions for modal operators:

1. val(ν, [α]φ) = true :⇐⇒ val(ω, φ) = true for all ω with (ν, ω) ∈ ρ(α)
2. val(ν, 〈α〉φ) = true :⇐⇒ val(ω, φ) = true for some ωwith (ν, ω) ∈ ρ(α)

Definition 4 (Semantics of hybrid programs). The valuation, ρ(α), of a
hybrid program α, is a transition relation on states. It specifies which state ω is
reachable from a state ν by operations of the hybrid system α and is defined as:

1. (ν, ω) ∈ ρ(x := θ) :⇐⇒ ω = ν[x �→ val(ν, θ)]
2. (ν, ω) ∈ ρ(ẋ = θ&χ) :⇐⇒ there is a function f : [0, r] → Sta(V ) with r ≥ 0

such that f(0) = ν, f(r) = ω, and val(f(ζ), x) is continuous in ζ on [0, r]
and has a derivative of value val(f(ζ), θ) at each time ζ ∈ (0, r). For y �= x
and ζ ∈ [0, r], val(f(ζ), y) = val(ν, y). Further, val(f(ζ), χ) = true for each
ζ ∈ (0, r). Systems of differential equations are defined accordingly.

3. ρ(?χ) = {(ν, ν) : val(ν, χ) = true}
4. ρ(α; γ) = ρ(α)◦ρ(γ) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(γ) for some state z}
5. ρ(α ∪ γ) = ρ(α) ∪ ρ(γ)
6. (ν, ω) ∈ ρ(α∗) iff there are n ∈ N and ν=ν0, . . . , νn=ω with (νi, νi+1) ∈ ρ(α)

for 0 ≤ i < n.

For the semantics of differential equations, derivatives are well-defined on (0, r)
as Sta(V ) is isomorphic to a finite dimensional real space when V is finite.



Differential Dynamic Logic for Verifying Parametric Hybrid Systems 223

∪

?m−z<s

?m−z≥s

a :=−b

a :=
0

τ := 0 z̈ = a

τ̇ = 1
& τ≤ε

Fig. 2. Transition structure of speed supervision

2.3 Speed Supervision in Train Control

In the European Train Control System (ETCS) [9, 12], trains are only allowed
to move within their current movement authority block (MA). When their MA
is not extended before reaching its end, trains always have to stop within the
MA because there can be open gates or other trains beyond. Here, we identify a
single component which is most responsible for the hybrid characteristics of safe
driving: speed supervision locally controls the movement of a train such that
it always remains within its MA. Depending on the current driving situation,
the speed supervision determines a safety envelope s around the train, within
which driving is safe, and adjusts its acceleration a in accordance with s (called
correction in [9]). In the course of this paper, we derive a constraint on s that
guarantees safe driving. To simplify the presentation, we assume, as in [9], that
the train controller only chooses between braking and keeping speed. Constraints
for positive acceleration can be derived accordingly.

Of course, a safe operation of ETCS also depends on other aspects like a dis-
joint partitioning of the track into MA, appropriate computation of the safe rear
end of trains, or proper functioning of gates [9]. But these more static properties
are much easier to show when the most important hybrid train dynamics have
been captured in a reliable operation of the speed supervision.

We assume that an MA has been granted up to track position m and the
train is located at position z, heading with initial speed v towards m. In this
situation, dL can analyse the following safety property of speed supervision:

ψ → [(corr ; drive)∗] z ≤ m (1)
where corr ≡ (?m− z < s; a :=−b) ∪ (?m− z ≥ s; a := 0)

drive ≡ τ := 0; (ż = v, v̇ = a, τ̇ = 1 & v ≥ 0 ∧ τ ≤ ε) .

It expresses that a train will always remain within its MA m, assuming a con-
straint ψ for the parameters. In corr , the train corrects its acceleration or brakes
with force b (as a failsafe recovery manoeuvre [9]) on the basis of the remaining
distance (m−z). Then, the train continues moving according to drive. There, the
position z of the train evolves according to the system ż = v, v̇ = a (i.e., z̈ = a).
The evolution stops when the speed v drops below zero (or earlier). Simulta-
neously, clock τ measures the duration of the current drive phase before the
controllers react to situation changes (we model this to bridge the gap of con-
tinuous-time models and discrete-time control design). Clock τ is reset to zero



224 A. Platzer

when entering drive, constantly evolves along τ̇ = 1, and is bound by the invari-
ant region τ ≤ ε. The effect is that a drive phase is interrupted for reassessing
the driving situation after at most ε seconds, and the corr; drive loop repeats.
The corresponding transition structure ρ((corr; drive)∗) is depicted in Fig. 2.

Instead of manually choosing specific values for the free parameters as in
[9, 12], we will use our calculus to synthesise constraints on the relationship of
parameters that are required for a safe operation of train control.

3 A Verification Calculus for Differential Logic

In this section, we introduce a sequent calculus for verifying hybrid systems in dL.
With the basic idea being to perform a symbolic evaluation, hybrid programs
are successively transformed into logical formulas describing their effects.

For propositional logic, standard rules P1–P9 are listed in Fig. 3. The other
rules transform hybrid programs into simpler logical formulas, thereby relating
the meaning of programs and formulas. Rules D1–D7 are as in discrete dy-
namic logic [4, 15]. D8 uses generalised substitutions [4] for handling discrete
change. Unlike in uninterpreted first-order logic [15], quantifiers are dealt with
using quantifier elimination [8] over the reals (D9–D12) in a way that is com-
patible with dynamic modalities. D13–D14 handle continuous evolutions given
a first-order definable flow yx for ẋ = θ. In combination with D9–D12, they fully
encapsulate the handling of differential equations within hybrid systems. D15 is
an induction schema with inductive invariant p.

3.1 Rules of the Calculus

A sequent is of the form Γ � Δ, where Γ and Δ are finite sets of formulas. Its
semantics is that of the formula

∧
φ∈Γ φ →

∨
ψ∈Δ ψ. Sequents will be treated

as an abbreviation. In the following, an update U simply is a list of discrete
assignments of the form x := θ (see [4] for techniques dealing with a single parallel
update rather than a list, which can be combined with our calculus). Rules are
applicable anywhere in the sequent, within any context Γ,Δ and update 〈U〉:

Definition 5 (Provability, derivability). A formula ψ is provable from a
set Φ of formulas, denoted by Φ �dL ψ iff there is a finite set Φ0 ⊆ Φ for which
the sequent Φ0 � ψ is derivable. In turn, a sequent of the form Γ, 〈U〉Φ � 〈U〉Ψ,Δ
(for some update U , including the empty update, and finite sets Γ,Δ of context
formulas) is derivable iff there is an instance

Φ1 � Ψ1 . . . Φn � Ψn

Φ � Ψ

of a rule schema of the dL calculus in Fig. 3 such that for each 1 ≤ i ≤ n

Γ, 〈U〉Φi � 〈U〉Ψi, Δ



Differential Dynamic Logic for Verifying Parametric Hybrid Systems 225

(P1)
� φ

¬φ �

(P2)
φ �
� ¬φ

(P3)
φ � ψ

� φ → ψ

(P4)
φ, ψ �

φ ∧ ψ �

(P5)
� φ � ψ

� φ ∧ ψ

(P6)
� φ ψ �
φ → ψ �

(P7)
φ � ψ �

φ ∨ ψ �

(P8)
� φ, ψ

� φ ∨ ψ

(P9)
φ � φ

(D1)
φ ∧ ψ

〈?φ〉ψ

(D2)
φ → ψ

[?φ]ψ

(D3)
〈α〉φ ∨ 〈γ〉φ
〈α ∪ γ〉φ

(D4)
[α]φ ∧ [γ]φ

[α ∪ γ]φ

(D5)
φ ∨ 〈α; α∗〉φ

〈α∗〉φ

(D6)
φ ∧ [α; α∗]φ

[α∗]φ

(D7)
〈[α]〉〈[γ]〉φ
〈[α; γ]〉φ

(D8)
φθ

x

〈[x := θ]〉φ

(D9)
qelim(∃x

∧
i(Γi � Δi))

Γ � Δ,∃x φ

(D10)
qelim(∀x

∧
i(Γi � Δi))

Γ,∃x φ � Δ

(D11)
qelim(∀x

∧
i(Γi � Δi))

Γ � Δ,∀x φ

(D12)
qelim(∃x

∧
i(Γi � Δi))

Γ,∀x φ � Δ

(D13)
∃t≥0 (χ̄ ∧ 〈x := yx(t)〉φ)

〈ẋ = θ &χ〉φ (D14)
∀t≥0 (χ̄ → [x := yx(t)]φ)

[ẋ = θ &χ]φ

(D15)
� p � [α∗](p → [α]p)

� [α∗]p

Rule D8 is only applicable if the substitution of x by θ in φθ
x introduces no new bindings.

In D13–D14, t and t̃ are fresh variables, and yv is the solution of the initial value
problem (ẋ = θ, x(0) = v). Additionally, χ̄ is an abbreviation for ∀0<t̃<t 〈x := yx(t̃)〉χ;
it simplifies to true if χ equals true . In D9–D12, x does not occur in Γ, Δ. Further,
the Γi � Δi are obtained from the resulting sub-goals of a side deduction, see (�) in
Fig. 4. The side deduction is started from the goal Γ � Δ, φ at the bottom (or Γ, φ � Δ
for D10 and D12). In the resulting sub-goals Γi � Δi, variable x is assumed to occur
in first-order formulas only, as quantifier elimination (qelim) is then applicable.

Fig. 3. Rule schemata of the dL verification calculus

D9
qelim(∃x

V
i(Γi � Δi))

Γ � Δ, ∃x φ

8<
:

Γ1 � Δ1

. . . � . . . . . .
Γn � Δn

. . . � . . .
Γ � Δ, φ

9=
; (�)

start side

qelim

Fig. 4. Side deduction for quantifier elimination rules

is derivable. Moreover, the symmetric schemata D1–D14 can be applied on either
side of the sequent (again in context Γ,Δ and update 〈U〉). In D7 and D8, the
schematic modality 〈[·]〉 can further be instantiated with both [·] and 〈·〉. The same
modality instance has to be chosen within a single schema instantiation, though.



226 A. Platzer

As usual in sequent calculus—although the direction of entailment is from pre-
misses (above rule bar) to conclusion (below)—the order of reasoning is goal-
directed : Rules are applied in tableau-style, that is, starting from the desired
conclusion at the bottom (goal) to the premisses (sub-goals). In the sequel we
illustrate the new dL rules.

Discrete jumps. For handling discrete change, rule D8 uses generalised substi-
tutions [4]. The result of applying to φ the substitution that replaces x by θ
is defined as usual [15]; it is denoted by φθ

x. Rule D8 is not applicable when
the substitution introduces new bindings. For this, the definition of a “bound
occurrence of a variable y” is amended to include the scope of y := θ and ẏ = θ,
because both change the value of y.

Continuous evolution. D13–D14 require solving a symbolic initial value problem.
We assume that the differential equations have first-order definable unique flows.
See [2,24] for first-order approximation techniques of more general flows.

Real arithmetic. Rules D9–D12 constitute a purely modular interface to math-
ematical reasoning. They can use any theory that admits quantifier elimination
and has a decidable ground theory (e.g., [8]):

Definition 6 (Quantifier elimination). A first-order theory admits quanti-
fier elimination if to each formula φ, a quantifier-free formula qelim(φ) can be
effectively associated that is equivalent (i.e., φ ↔ qelim(φ) is valid) and has no
other free variables. The operation qelim is further assumed to evaluate ground
formulas (i.e., without variables), yielding a decision procedure for this theory.

Integrating quantifier elimination to deal with statements about real quantities
is quite challenging in the presence of modalities that influence the value of
variables and terms. Even more so, the effect of a modality depends on the
solutions of the differential equations contained therein. For instance, it is hard
to know in advance, which first-order constraints need to be solved by qelim in
∃x [ẍ = −b;x := 2x]x ≥ 5. To find out, the way how x evolves from ∃x to x ≥ 5
along the system dynamics needs to be taken into account. Hence, our calculus
first unveils the first-order constraints on x before applying qelim. To achieve
this in a concise way, we use side deductions.

The effect of a side deduction is as follows. First, the dL calculus discovers all
relevant first-order constraints from modal formulas using a side deduction in dL.
Secondly, these constraints are equivalently reduced using qelim and the main
proof continues. For instance, an application of D9 to a sequent Γ � Δ, ∃xφ
starts a side deduction (marked (") in Fig. 4) with the goal Γ � Δ,φ at the
bottom. This side deduction is carried out in the dL calculus until x no longer
occurs within modal formulas of the remaining open branches Γi � Δi of (").
Once all occurrences of x are in first-order formulas, the resulting sub-goals
Γi � Δi of (") are copied back to the main proof and qelim is applied (which
determines the resulting sub-goal of rule D9 on the upper left side of Fig. 4).
The remaining modal formulas not containing x can be considered as atoms for
this purpose as they do not impose constraints on x.



Differential Dynamic Logic for Verifying Parametric Hybrid Systems 227

v > 0, z < m � v2 ≥ 2b(m − z)
D9 v > 0, z < m � ∃t≥0 〈z := − b

2 t2 + vt + z〉z ≥ m
D13v > 0, z < m � 〈ż = v, v̇ = −b〉z ≥ m
P3 � v > 0 ∧ z < m → 〈ż = v, v̇ = −b〉 z ≥ m

v > 0, z < m � t≥0

v > 0, z < m � − b
2 t2 + vt + z ≥ m

D8v > 0, z < m � 〈z := − b
2 t2 + vt + z〉z ≥ m

P5 v > 0, z < m � t ≥ 0 ∧ 〈z := − b
2 t2 + vt + z〉z ≥ m

start
side

qelim

Fig. 5. Analyse MA-violation in braking mode using side deductions

For implementations in a theorem prover, a careful analysis shows that side
deductions can also be performed within the original proof, but the correspond-
ing calculus rules, which keep track of the (lost) quantifier nesting, are quite
technical and side deductions lead to a cleaner proof structure. Observe that
reintegrating the open branches Γi � Δi into the main proof corresponds to
discharging multiple sub-goals simultaneously. Modifying tableau procedures to
remove multiple open branches at once is not difficult. It works similarly to si-
multaneous closing substitutions in all branches of free variable tableaux, except
that quantifier elimination can produce more than one instantiation.

3.2 Modular Combination by Side Deduction

To illustrate how our calculus combines arithmetic with dynamic reasoning using
side deductions, we give an example. Because we will need a similar result when
verifying speed supervision, we consider braking of trains. The deduction in
Fig. 5 can be used to analyse whether a train could violate its MA although it
brakes. As the prover will discover, the answer depends on the initial velocity v.

Rules D9 and D13 are implemented using Mathematica. Applying D9 in the
main proof triggers a side deduction. The conjunction of the open proof goals in
the side deduction can be handled by quantifier elimination and simplification
in Mathematica, yielding the resulting premiss for D9 in the main proof:

qelim(∃t
(
(v > 0 ∧ z < m→ t ≥ 0) ∧ (v > 0 ∧ z < m→ − b

2
t2+vt+z ≥ m)

)
)

≡ v > 0 ∧ z < m → v2 ≥ 2b(m− z) .

The open branch of the main proof reveals the speed limit and can be used to
synthesise a corresponding parametric constraint. When v2 ≥ 2b(m− z) holds
initially, then the MA will be violated despite braking. Similarly, v2 ≤ 2b(m− z)
guarantees that the MA can be respected by appropriate braking.

3.3 Soundness and Incompleteness

In this section we prove that verification with the dL calculus always produces
correct results about system safety, i.e., the dL calculus is sound.



228 A. Platzer

Theorem 1 (Soundness). The dL calculus is sound, i.e., derivable formulas
are valid (true in all states of all interpretations).

This theorem is a direct consequence of an even stronger result of soundness
localised with respect to a single state (instead of requiring the premiss to be true
in all states). The primary challenges within this proof are continuous evolutions
and the interaction of quantifier elimination with sequent calculus.

Proposition 1 (Local soundness). All dL rules in Fig. 3 are locally sound:
for all states ν, the conclusion is true in ν when all premisses are true in ν.

Proof. Most rules can be proven as in [4]. The special cases for dL are:

– Rule D9 is locally sound: Let ν be a state in which the premiss is true, i.e.,

ν |= qelim(∃x
∧

i

(Γi � Δi)) .

We have to show that the conclusion is true in this state. Using that quantifier
elimination yields an equivalence, we see that ν also satisfies ∃x

∧
i(Γi � Δi)

prior to the quantifier elimination. Hence, for some d ∈ R we obtain:

ν[x �→ d] |=
∧

i

(Γi � Δi) .

As (") in Fig. 4 is inductively shown to be locally sound, we can conclude that
ν[x �→ d] |= (Γ � Δ,φ). Therefore, ν |= ∃x (Γ � Δ,φ). Now the conjecture
can be obtained using standard reasoning with quantifiers and the absence
of x in Γ,Δ by rewriting the conclusion with local equivalences:

∃x (Γ � Δ,φ) ≡ ∃x (¬Γ ∨Δ ∨ φ) ≡ ¬Γ ∨Δ ∨ ∃xφ ≡ Γ � Δ, ∃xφ
(2)

The soundness proof for D11 is similar since (2) holds for any quantifier. The
proofs of D10 and D12 can be derived using duality of quantifiers.

– Rule D13 is locally sound: Assuming the premiss is true in some state ν, we
have to show that there is a state ω with ω |= φ such that (ν, ω) ∈ ρ(ẋ = θ).
By premise, there is a real value e ≥ 0 such that when we abbreviate ν[t �→ e]
by ν̃, we have ν̃ |= 〈x := yx(t)〉φ. Let ωe be such that (ν̃, ωe) ∈ ρ(x := yx(t)),
thus ωe |= φ. Then, it only remains to show (ν̃, ωe) ∈ ρ(ẋ = θ). This, in
turn, is shown using the function e �→ ωe, which yields continuity and a
solution of the initial value problem by the corresponding properties of yx.
Since ρ(ẋ = θ) and φ do not depend on the fresh variable t, the same rea-
soning holds for ν in place of ν̃. The invariant χ can be shown accordingly.

Now we show that unlike first-order real arithmetic, dL is undecidable. We show
that both unbounded repetition in the discrete fragment and unbounded evolu-
tion in the continuous fragment cause incompleteness and undecidability.

Theorem 2 (Incompleteness). Both the discrete fragment and the continuous
fragment of dL are inherently incomplete, i.e., there is no sound and complete
effective calculus. Hence, valid dL formulas are not always provable.



Differential Dynamic Logic for Verifying Parametric Hybrid Systems 229

(G1)
φ � ψ

〈[α]〉φ � 〈[α]〉ψ (G2)
Γ � 〈[U ]〉p,Δ p � [α]p p � φ

Γ � 〈[U ]〉[α∗]φ, Δ

Fig. 6. Global and derived dL rules

Proof. We prove that natural numbers are definable amongst the real numbers
of dL interpretations in both fragments. Then these fragments extend first-order
integer arithmetic such that the incompleteness theorem of Gödel applies. Nat-
ural numbers are definable in the discrete fragment using repetitive additions.
In the continuous fragment without {∗, :=}, natural numbers are definable as:

nat(n) ↔ ∃s ∃c (s = 0 ∧ c = 1 ∧ 〈ṡ = c, ċ = −s, τ̇ = 1〉(s = 0 ∧ τ = n)) .

These ODEs have sin and cos as unique solutions for s and c, respectively. Their
zeros, detected by τ , characterise an isomorphic copy of natural numbers, scaled
by π. The initial values for s and c prevent the trivial solution identical to 0.

4 Verifying Speed Supervision in Train Control

Finding Inductive Candidates. We want to prove the safety statement (1) of
Section 2.3. Using parametric extraction techniques, we identify both the re-
quirement ψ for safe driving and the induction hypothesis p that is required for
the proof. An unwinding of the loop in (1) by D6 can be used to extract a candi-
date for a parametric inductive hypothesis (similar to the proof in Section 3.2).
It expresses that there is sufficient braking distance (m− z) at current speed v:

p ≡ v2 ≤ 2b(m− z) ∧ b > 0 ∧ ε > 0 .

Inductive Verification. The generalisation rule G1 in Fig. 6 can be used to derive
the variant G2 of the induction rule D15: With G1, G2 can be derived from D15
by discharging [α∗] in the premiss of D15 and strengthening φ to p.

Applying G2 to (1), the premiss p � z ≤ m holds as 0 ≤ v2 ≤ 2b(m− z) and
b > 0. The induction start ψ � p of G2 will be examined after the full proof
has been given, since we want to identify the prerequisite ψ for safe driving
by proof analysis. For proving the induction step p � [corr ; drive]p, we remove
condition m− z < s from corr , because it is not used in the proof (as braking
remains safe with respect to z ≤ m). Here, we abbreviate the side deductions of
D11 as they do not branch but only apply P3,D8. The induction step of G2 can
be proven in dL (D11 and D14 are implemented in Mathematica):

. . .
p � [a :=−b][drive]p

. . .
p,m−z≥s � [a := 0][drive]p

D2,P3 p � [?m−z≥s; a := 0][drive]p
D4,P5 p � [corr][drive]p

D7 p � [corr ; drive]p



230 A. Platzer

Here, the invariant evolution conditions are convex, hence χ̄ can be simplified to
〈x := yx(t)〉χ to save space. Further, we leave out conditions which are unneces-
sary for closing the proof: In the left branch, the constrained evolution of τ is
irrelevant and will be left out. The left branch closes as follows (marked as ∗):

∗
D11,P3,D8p � ∀t≥0 ([v :=−bt+ v]v ≥ 0→ [z :=− b

2 t
2 + vt+ z; v :=−bt+ v]p)

D14 p � [ż = v, v̇ = −b& v ≥ 0]p
D8 p � [a :=−b][drive]p

The right branch does not need condition v ≥ 0, because v does not decrease:
. . .

p,m−z≥s � v2 ≤ 2b(m− εv − z)
D11,P3,D8p,m−z≥s � ∀t≥0 ([τ := t]τ ≤ ε→ [z := vt+ z]p)

D8 p,m−z≥s � [τ := 0]∀t≥0 ([τ := t+ τ ]τ ≤ ε→ [z := vt+ z]p)
D14 p,m−z≥s � [τ := 0][ż = v, v̇ = 0, τ̇ = 1 & τ ≤ ε]p
D8 p,m−z≥s � [a := 0][τ := 0][ż = v, v̇ = a, τ̇ = 1 & τ ≤ ε]p
D7 p,m−z≥s � [a := 0][drive]p

Augmenting Inductive Candidates. The right branch only closes when p guar-
antees the succedent v2 ≤ 2b(m− εv − z), i.e., that there will still be sufficient
braking distance even after keeping the speed for up to ε seconds. As m− z ≥ s,
this succedent is implied by v2 ≤ 2b(s− εv), which can be discovered automat-
ically by quantifier elimination. In fact, using p ∧ v2 ≤ 2b(s− εv) in place of p
makes the argument inductive, and the whole proof of the safety statement (1)
closes when the same formula is chosen for ψ. Here, no conjunct of ψ can be
removed without leaving the proof open due to a counterexample.

t

z

v

Fig. 7. Correcting

From v2 ≤ 2b(s− εv), we can also derive s ≥ εv + v2

2b
as an equivalent yet constructive constraint. From the
above proof, we can further conclude that speed supervi-
sion remains safe even when s is chosen adaptively in ac-
cordance with this constraint at the beginning of corr in
response to speed changes. This permits safe behaviour as
complex as that in Fig. 7. Similar correctness constraints
can be derived when the train is allowed to increase its
speed if m− z ≥ s.

In this example, we can see the effect of the dL calculus. It takes a specification
of a hybrid system and successively identifies the arithmetic constraints which
need to be investigated for proving correctness. These constraints can then be
handled in a purely modular way by D9-D12 and side deductions.

5 Conclusions and Future Work

We have introduced a first-order dynamic logic with interacting discrete jumps
and continuous evolutions along differential equations. For this differential logic,
dL, we have presented a calculus for verifying parametric hybrid systems.



Differential Dynamic Logic for Verifying Parametric Hybrid Systems 231

Our sequent calculus for dL is based on a classical calculus for discrete dy-
namic logic [15]. In order to handle continuous evolution, we combine quantifier
elimination with the calculus in a modular and constructive way. Our calculus
handles first-order definable flows for differential equations. It combines non-
invasively with deductive verification systems for dynamic logic. Further, it has
a modular interface to combine arithmetic with dynamic reasoning in the pres-
ence of state change. We demonstrate that our calculus can verify safety in
a parametric train control scenario. Meanwhile, this case study has also been
verified in an interactive theorem prover based on the KeY system [3].

We currently extend our partial implementation of the dL calculus. Moreover,
dynamic logic supports reasoning about dynamic reconfiguration of system struc-
ture [4], which we want to extend to hybrid systems. Finally, our future ambition
is to analyse the quotient of reasoning about hybrid systems modulo differential
equation solving and inductive first-order system invariants.

Acknowledgements. I would like to thank the anonymous referees for their in-
sightful comments and Ernst-Rüdiger Olderog and his group for their remarks.

References

1. Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded
systems. IEEE Trans. Software Eng. 22(3), 181–201 (1996)

2. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimi-
nation. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.
LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-
oriented program verification. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 266–280. Springer, Heidelberg (2006)

5. Bemporad, A., Bicchi, A., Buttazzo, G. (eds.): Hybrid Systems: Computation and
Control. 10th International Conference, HSCC 2007, Pisa, Italy. LNCS, vol. 4416.
Springer, Heidelberg (2007)

6. Boulton, R.J., Hardy, R., Martin, U.: A Hoare logic for single-input single-output
continuous-time control systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003.
LNCS, vol. 2623, pp. 113–125. Springer, Heidelberg (2003)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

8. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

9. Damm, W., Hungar, H., Olderog, E.-R.: On the verification of cooperating traffic
agents. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 77–110. Springer, Heidelberg (2003)

10. Davoren, J.M.: On hybrid systems and the modal μ-calculus. In: Antsaklis, P.J.,
Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) Hybrid Systems. LNCS,
vol. 1567, pp. 38–69. Springer, Heidelberg (1997)

11. Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proceedings of the
IEEE 88(7), 985–1010 (2000)



232 A. Platzer

12. Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the
European Train Control System. In: FMCAD, pp. 76–77. IEEE Computer Society,
Washington (2006)

13. Fränzle, M.: Analysis of hybrid systems. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.)
CSL 1999. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999)

14. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)
16. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE

Computer Society, Washington (1996)
17. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for

real-time systems. In: LICS, pp. 394–406. IEEE Computer Society, Washington
(1992)

18. Hutter, D., Langenstein, B., Sengler, C., Siekmann, J.H., Stephan, W., Wolpers,
A.: Deduction in the verification support environment (VSE). In: Gaudel, M.-C.,
Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051, Springer, Heidelberg (1996)

19. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems.
In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp.
137–151. Springer, Heidelberg (1999)

20. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algo-
rithmic algebraic model checking I. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)

21. Platzer, A.: Differential logic for reasoning about hybrid systems. In: Bemporad
et al. [5] p. 746–749

22. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In:
Artemov, S., Nerode, A. (eds.) Logical Foundations of Computer Science, Inter-
national Symposium, LFCS 2007, New York, USA. LNCS, vol. 4514, pp. 457–471.
Springer, Heidelberg (2007)

23. Platzer, A.: Towards a hybrid dynamic logic for hybrid dynamic systems. In: Black-
burn, P., Bolander, T., Braüner, T., de Paiva, V., Villadsen, J. (eds.), Proc. LICS
International Workshop on Hybrid Logic, 2006, Seattle, ENTCS (2007)

24. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model
checking. In: Bemporad et al. [5] p. 473–486

25. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput.
Sci. 290(1), 937–973 (2003)

26. Rounds, W.C.: A spatial logic for the hybrid π-calculus. In: Alur, R., Pappas, G.J.
(eds.) HSCC 2004. LNCS, vol. 2993, pp. 508–522. Springer, Heidelberg (2004)

27. Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid
real-time systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.)
Hybrid Systems. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1992)



Improvements to the Tableau Prover PITP

Alessandro Avellone, Guido Fiorino, and Ugo Moscato

Dipartimento di Metodi Quantitativi per le Scienze Economiche e Aziendali,
Università Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milano, Italy

{alessandro.avellone,guido.fiorino,ugo.moscato}@unimib.it

Abstract. In this paper we discuss the new version of PITP, a proce-
dure to decide propositional intuitionistic logic, which turns out at the
moment to be the best propositional prover on ILTP. The changes in
the strategy and implementation make the new version of PITP faster
and capable of deciding more formulas than the previous one. We give
a short account both of the old optimizations and the changes in the
strategy with respect to the previous version. We use ILTP library and
random generated formulas to compare the implementation described in
this paper to the other provers (including our old version of PITP).

1 Introduction

In this article we describe the optimizations and the main features of PITPv2.1,
a decision procedure based on a tableau calculus for propositional intuitionis-
tic logic. While some of them have already been described in [4] (we refer to
the implementation as PITPv1.0) and [6] (we refer to the implementation as
PITPv2.0), two optimizations are new and allow us to have a new implementa-
tion outperforming the old version (we refer to this version as PITPv2.1 that can
be downloaded from http://www.dimequant.unimib.it/PITP/index.html).

Our interest in developing an efficient decision procedure and a theorem prover
for propositional intuitionistic logic lies in the applications that such a logic and
intermediate logics have in formal software/hardware verification and program
synthesis ([7,8,14]). As an example, we quote [5,1] where a version of PITP is
used as the kernel both to decide an extension of propositional intuitionistic
logic with constructive negation and to compute exact stabilization bounds of
combinatorial circuits.

We present some experimental results comparing PITPv2.1 and PITPv2.0.
We perform our comparisons both on random generated formulas and on the
propositional part of ILTP v1.1.2 benchmark library ([15]). Of 274 propositional
benchmarks contained in ILTP v1.1.2, PITPv2.1 decides 238 formulas within the
time limit of ten minutes; we point out that PITPv2.1 outperforms PITPv1.0,
that decides 215 formulas and PITPv2.0, that decides 234 formulas (see ILTP
and its archives [15]).

2 The Calculus and the Optimizations: An Overview

PITPv2.1 is based on our tableau calculus. Full details on the calculus can be
found in [9,3].

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 233–237, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



234 A. Avellone, G. Fiorino, and U. Moscato

The basic strategy employed by PITP consists in dividing the rules into
six groups according to their behaviour with respect to branching (rules with
two sets of formulas in the conclusion) and backtracking (rules that are non-
invertible). This strategy is well-known and is our starting point. PITPv2.1 uses
some optimization techniques to narrow the search space and the number of
nodes of a tableau proof. In the following we provide a brief account.

We have adapted Simplification to intuitionistic logic, a technique described
in [13] for classical and modal logics. As classical and intuitionistic logic are
semantically different, in some cases we cannot apply Simplification (see [6]).
However, it is the most effective among our optimization techniques and makes
the difference in the performances between PITPv1.0 and PITPv2.0. In partic-
ular, formulas SYJ202+1.010, SYJ207+1.005, SYJ208+1.009 to SYJ208+1.020
and SYJ212+1.012 to SYJ212+1.016 of ILTP have been decided by PITPv2.0.
In order to make this technique effective, data structure has to be carefully
designed (we give an account in Section 3).

There are cases where the proof for a formula can be rewritten (by us-
ing a permutation on propositional variables) and used as a proof for another
formula. This can happen when the formulas at hand have the same struc-
ture as in {T(((P0 → (P1 ∨ P2)) → (P1 ∨ P2))),T(((P2 → (P1 ∨ P0)) →
(P1∨P0))),T(((P1 → (P2∨ P0))→ (P2∨ P0))),FP1,FP2,FP0}. The proof
that S = {T(((P2 → (P1 ∨ P0)) → (P1 ∨ P0))),T(((P1 → (P2 ∨ P0)) →
(P2 ∨ P0))),T(P0),FP1,FP2)} holds in a Kripke model can be rewritten by
substituting respectively P2 with P0 and vice-versa and becomes a proof that
S′ = {T(((P0 → (P1 ∨ P2)) → (P1 ∨ P2))),T(((P1 → (P2 ∨ P0)) → (P2 ∨
P0))),T(P2),FP1,FP0} has a Kripke model. This is possible because there is
a permutation τ on the propositional variables occurring in the set such that
when we substitute the propositional variables occurring in S′ by using τ we
get S. PITPv2.0 and PITPv2.1 do not try all the possible permutations but
consider two target formulas having the same structure and try to build a single
permutation for the two target formulas.

The semantics of the formulas in which only conjunctions and disjunctions oc-
cur coincides with their semantics in classical logic. To bound branching on such
formulas we exploit Regularity [10], a well-known technique applied in classical
theorem proving. In a few words, such formulas are not expanded if they are
satisfied by the canonical model defined by the formulas at hand. It turns out
that regularity allows us to improve the performances on the class of formulas
SYJ202+1 in PITPv1.0 (see [4]).

2.1 Two More Optimizations

PITPv2.0 misses two optimizations that in certain circumstances allow the
shrinking of the search space and the width of the proofs. The first technique
avoids backtracking and is based on the following consideration. When F →,
F¬ or T→→ are applied and S = Sc, then the application of the rule does not



Improvements to the Tableau Prover PITP 235

require backtracking because from satisfiability of one of the sets in the conclu-
sion we can deduce the realizability of the set in the premise (we emphasize that
for sequent calculi with one succedent this idea is trivial). By adding this strat-
egy, PITPv2.1 is able to prove more formulas than PITPv2.0 both on the ILTP
library and on randomly generated formulas. In particular, it turns out that
PITPv2.1 decides formulas SYJ212+1.017 to SYJ212+1.020, a class of formulas
already decided by other provers such as ft and STRIP [16,12]. In the following
tables comparisons with the propositional provers included in the ILTP library
are provided.

Finally, we have introduced Semantic Branching Technique [11], a technique
widely used and derived from DLP procedure. In our case it consists in adding
to the calculus the rules

S,F(p ∧B)

S,Fp|S,Tp,FB
F∧−prop1

S,F(A ∧ p)
S,FA,Tp|S,Fp

F∧−prop2

where p is a propositional variable. Thus the rules introduce “positive” infor-
mation in the set. Our experiments show that with these rules we never waste
time. On the other hand by extending this idea to T∧-formulas or generaliz-
ing to non-atomic formulas sometimes reduces performances. Experiments show
that we can have a decrease in performances if we use it exactly as in classical
logic.

3 Data Structure Modifications and Other
Implementation Issues

The code of PITP is written in C++; to represent formulas we use a goedeliza-
tion and we handle them in two layers: in the bottom layer we implement the
formula according to its structure and in the top layer we implement sets of
signed formulas grouping them according to the strategy described in [4]. In
each layer we use many data structures to take into account the optimizations
described above. For instance, to implement Simplification we store the number
of subformulas of a formula and their parent formulas. Moreover, to implement

Table 1. Result on ILTP v1.1.2 formulas

ft Prolog ft C LJT STRIP PITPv2.0 PITPv2.1
solved 188 199 175 202 234 238
(%) 68.6 72.6 63.9 73.7 85.4 86.9
proved 104 106 108 119 129 128
refuted 84 93 67 83 105 110
solved after:

0-1s 173 185 166 178 207 215
1-10s 5 6 4 11 13 15

10-100s 6 7 2 11 7 6
100-600s 4 1 3 2 7 2
(>600s) 86 75 47 43 39 35
errors 0 0 52 29 1 1



236 A. Avellone, G. Fiorino, and U. Moscato

branching and backtracking we use a stack and a data structure to treat the signed
formulas contained in every set of signed formulas of a path of the proof tree.

4 Concluding Remarks

Let us conclude this short description of our work by observing that formulas of
ILTP have been very important for stimulating us in the search for improvements
and optimization; formulas of the ILTP library suggest that classical techniques
are effective in the intuitionistic framework too. Of 274 formulas of ILTP, 33
formulas haven’t been solved yet by any prover. We think that those formulas
will require great efforts both from a theoretical and practical point of view. Also,
the growth of the performances of PITP (on January 2006 its first version decided
only 171 formulas) proves the fact that it hasn’t been difficult to incorporate new
sound and complete strategies and this could be due to code modularity and/or
the use of genuine tableaux calculi. For instance, we were wondering whether
the use of contraction free sequent calculi could have the same readiness in
incorporating new strategies. For the future, we are waiting for a new version of
ILTP including new formulas for testing PITPv2.1 and we plan to incorporate
in our parallel version IPTP [2] the new strategies of PITPv2.1 and run IPTP
on a HP Superdome 64 CPUs machine.

Table 2. Provable ILTP v1.1.2 formulas solved by classes

SYJ202+1 SYJ205+1 SYJ206+1
provable provable provable

ft Prolog 07 (516.55) 08 (60.26) 10 (144.5)
ft C 07 (76.3) 09 (85.84) 11 (481.98)
LJT 02 (0.09) 20 (0.01) 05 (0.01)
STRIP 06 (11.28) 14 (267.39) 20 (37.64)
PITPv2.0 10 (492.88) 20 (0.01) 20 (4.23)
PITPv2.1 9 (48.77) [10 takes 625.24] 20 (0.02) 20 (9.14)

Table 3. Refutable ILTP v1.1.2 formulas solved by classes

SYJ207+1 SYJ208+1 SYJ209+1 SYJ211+1 SYJ212+1
refutable refutable refutable refutable refutable

ft Prolog 07 (358.05) 08 (65.41) 10 (543.09) 04 (66.62) 20 (0.01)
ft C 07 (51.13) 17 (81.41) 10 (96.99) 04 (17.25) 20 (0.01)
LJT 03 (2.64) 08 (0.18) 10 (461.27) 08 (546.46) 07 (204.98)
STRIP 04 (9.3) 06 (0.24) 10 (132.55) 09 (97.63) 20 (36.79)
PITPv2.0 05 (103.37) 20 (1.58) 10 (221.10) 20 (214.72) 16 (355.11)
PITPv2.1 06 (84.96) 20 (2.15) 10 (223.99) 20 (248.54) 20 (11.52)

Table 4. PITP on 5000 random formulas containing 100 variables

0-1s 1-10s 10-100s 100-600s > 600

PITPv2.0 4883(97.7%)41(0.8%) 15(0.3%) 9(0.2%) 52(1.0%)

PITPv2.1 4919(98.4%)12(0.2%) 10(0.2%) 12(0.2%) 47(0.9%)



Improvements to the Tableau Prover PITP 237

References

1. Avellone, A., Ferrari, M., Fiorentini, C., Fiorino, G., Moscato, U.: Esbc: an appli-
cation for computing stabilization bounds. ENTCS 153(1), 23–33 (2006)

2. Avellone, A., Fiorino, G., Moscato, U.: A parallel implementation of a decision
procedure for propositional intuitionistic logic. In: Mayer, M.C., Pirri, F. (eds.),
TABLEAUX, POSITION PAPERS AND TUTORIALS (2003)

3. Avellone, A., Fiorino, G., Moscato, U.: A new O(n lg n)-space decision proce-
dure for propositional intuitionistic logic. In: Baaz, A. V. M., Makowsky, J. (eds.),
volume VIII of Kurt Gödel Society, Collegium Logicum, pp. 17–33 (2004)

4. Avellone, A., Fiorino, G., Moscato, U.: A Tableau Decision Procedure for Propo-
sitional Intuitionistic Logic. In Proceedings of the 6th International Workshop on
the Implementation of Logic, of CEUR Workshop Proceedings 212, 64–79 (2006)

5. Avellone, A., Fiorentini, C., Fiorino, G., Moscato, U.: A space efficient implementa-
tion of a tableau calculus for a logic with a constructive negation. In: Marcinkowski,
J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 488–502. Springer, Heidel-
berg (2004)

6. Avellone, A., Fiorino, G., Moscato, U.: Optimization techniques for proposi-
tional intuitionistic logic and their implementation. submitted to JAL, (2007) At
http://www.dimequant.unimib.it/PITP/index.html

7. Constable, R.: Implementing Mathematics with the Nuprl Proof Development Sys-
tem. Prentice–Hall, Englewood Cliffs, New Jersey (1986)

8. Egly, U., Schmitt, S.: On intuitionistic proof transformations, their complexity,
and application to constructive program synthesis. Fundam. Inform. 39(1-2), 59–
83 (1999)

9. Fiorino, G.: Decision procedures for propositional intermediate logics. PhD thesis,
Dipartimento di Scienze dell’Informazione, Universita’ degli Studi di Milano, Italy
(2001)

10. Hähnle, R.: Tableaux and related methods. Handbook of Automated Reasoning,
pp. 100–178. Elsevier and MIT Press (2001)

11. Horrocks, I.: Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester (1997)

12. Larchey-Wendling, D., Méry, D., Galmiche, D.: Strip: Structural sharing for ef-
ficient proof-search. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS (LNAI), vol. 2083, pp. 696–700. Springer, Heidelberg (2001)

13. Massacci, F.: Simplification: A general constraint propagation technique for propo-
sitional and modal tableaux. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS
(LNAI), vol. 1397, pp. 217–232. Springer, Heidelberg (1998)

14. Mendler, M.: Timing analysis of combinational circuits in intuitionistic proposi-
tional logic. Formal Methods in System Design 17(1), 5–37 (2000)

15. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic.
release v1.1. To appear in JAR (2006)

16. Sahlin, D., Franzén, T., Haridi, S.: An intuitionistic predicate logic theorem prover.
J. Log. Comput. 2(5), 619–656 (1992)

http://www.dimequant.unimib.it/PITP/index.html


KLMLean 2.0: A Theorem Prover for KLM

Logics of Nonmonotonic Reasoning

Laura Giordano1, Valentina Gliozzi2, and Gian Luca Pozzato2

1 Dipartimento di Informatica - Università del Piemonte Orientale
“A. Avogadro” - via Bellini 25/G - 15100 Alessandria, Italy

laura@mfn.unipmn.it
2 Dipartimento di Informatica - Università degli Studi di Torino,

corso Svizzera 185 - 10149 Turin - Italy
{gliozzi,pozzato}@di.unito.it

Abstract. We present KLMLean 2.0, a theorem prover for propositional
KLM logics of nonmonotonic reasoning. KLMLean 2.0 implements some
analytic tableaux calculi for these logics recently introduced. KLMLean
2.0 is inspired by the “lean” methodology, it is implemented in SICStus
Prolog and it also contains a graphical interface written in Java1.

1 Introduction

In the early 90s Kraus, Lehmann and Magidor (from now on KLM) proposed a
formalization of nonmonotonic reasoning that has become a point of reference
[1,2]. According to KLM framework, a defeasible knowledge base is represented
by a (finite) set of nonmonotonic conditionals of the form A |∼ B, whose reading
is normally (or typically) the A’s are B’s. The operator “|∼” is nonmonotonic,
in the sense that A |∼ B does not imply A ∧ C |∼ B. For instance, a knowl-
edge base K may contain football lover |∼ bet , football player |∼ football lover ,
football player |∼ ¬bet , whose meaning is that people loving football typically
bet on the result of a match, football players typically love football but they
typically do not bet (especially on matches they are going to play...). If |∼
were interpreted as classical implication, one would get football player |∼ ⊥, i.e.
typically there are not football players, thereby obtaining a trivial knowledge
base. In KLM framework, the set of adopted inference rules defines some fun-
damental types of inference systems, namely, from the strongest to the weak-
est: Rational (R), Preferential (P), Loop-Cumulative (CL), and Cumulative
(C) logic. In all these systems one can infer new assertions without incurring
the trivializing conclusions of classical logic: in the above example, in none of
the systems can one infer football player |∼ bet . In cumulative logics (both C
and CL) one can infer football lover ∧ football player |∼ ¬bet , giving preference

1 This research has been partially supported by “Progetto Lagrange - Fondazione
CRT” and by the projects “MIUR PRIN05: Specification and verification of agent
interaction protocols” and “GALILEO 2006: Interazione e coordinazione nei sistemi
multi-agenti”.

N. Olivetti (Ed.): TABLEAUX 2007, LNAI 4548, pp. 238–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



KLMLean 2.0: A Theorem Prover for KLM Logics 239

to more specific information; in Preferential logic P one can also infer that
football lover |∼ ¬football player ; in the rational case R, if one further knows
that ¬(football lover |∼ rich), that is to say it is not the case that football lovers
are typically rich persons, one can also infer that football lover ∧ ¬rich |∼ bet .

In [3,4,5] analytic tableaux procedures T ST for propositional KLM logics are
introduced. In this work we describe an implementation of T ST in SICStus
Prolog called KLMLean 2.0: it is inspired by the “lean” methodology [6], and
it also contains a graphical interface written in Java. For the rational logic R,
KLMLean 2.0 implements the labelled calculus TRT introduced in [5], and offers
two different versions: 1. a simple version, where Prolog constants are used to
represent TRT’s labels; 2. a more efficient one, where labels are represented by
Prolog variables, inspired by the free-variable tableau presented in [7]. To the
best of our knowledge, KLMLean 2.0 is the first theorem prover for KLM logics.

2 KLM Logics and Their Tableau Calculi

We consider a propositional language L defined from a set of propositional vari-
ables ATM , the boolean connectives and the conditional operator |∼. We use
A,B,C, ... to denote propositional formulas, whereas F,G, ... are used to denote
all formulas (including conditionals). The formulas of L are defined as follows:
if A is a propositional formula, A ∈ L; if A and B are propositional formulas,
A |∼ B ∈ L; if F is a boolean combination of formulas of L, F ∈ L.

In general, the semantics of KLM logics is defined by considering possible
world (or possible states) structures with a preference relation w < w′ among
worlds (or states), whose meaning is that w is preferred to w′. A |∼ B holds in a
modelM if B holds in all minimal worlds (states) where A holds. This definition
makes sense provided minimal worlds for A exist whenever there are A-worlds
(A-states): this is ensured by the smoothness condition defined below. We recall
the semantics of KLM logics [1,2] from the strongest R to the weakest C. A
rational model is a triple M = 〈W , <, V 〉, where W is a non-empty set of items
called worlds,< is an irreflexive, transitive and modular2 relation onW , and V is
a valuation function V :W �−→ 2ATM . The truth conditions for a formula F are
as follows: - if F is a boolean combination of formulas, M, w |= F is defined as
for propositional logic; - let A be a propositional formula; we define Min<(A) =
{w ∈ W | M, w |= A and ∀w′, w′ < w implies M, w′ �|= A}; - M, w |= A |∼ B
if for all w′, if w′ ∈ Min<(A) then M, w′ |= B. We also define the smoothness
condition on the preference relation: if M, w |= A, then w ∈Min<(A) or ∃w′ ∈
Min<(A) s.t. w′ < w. Validity and satisfiability of a formula are defined as usual.
A preferential model is defined as the rational model, with the only difference
that the preference relation < is no longer assumed to be modular. Models for
(loop-)cumulative logics also comprise states. A (loop-)cumulative model is a
tuple M = 〈S,W , l, <, V 〉, where S is a set of states and l : S �→ 2W is a
function that labels every state with a nonempty set of worlds; < is defined on
S, it satisfies the smoothness condition and it is irreflexive and transitive in CL,
2 A relation < is modular if, for each u, v, w, if u < v, then either w < v or u < w.



240 L. Giordano, V. Gliozzi, and G.L. Pozzato

Fig. 1. Tableau systems T ST. To save space, we omit the standard rules for boolean
connectives. For T CLT and T CT the axiom (AX) is as in T PT.

whereas it is only irreflexive in C. A propositional formula holds in a state s if
it holds in all the worlds w ∈ l(s); a conditional A |∼ B holds in a model if B
holds in all minimal states where A holds.

In Figure 1 we present the tableaux calculi T ST for KLM logics, where S
stands for {R, P, CL, C}. The basic idea is simply to interpret the preference
relation as an accessibility relation. The calculi for R and P implement a sort of
run-time translation into (extensions of) Gödel-Löb modal logic of provability G.
This is motivated by the fact that we assume the smoothness condition, which
ensures that minimal A-worlds exist whenever there are A-worlds, by preventing
infinitely descending chains of worlds. This condition therefore corresponds to
the finite-chain condition on the accessibility relation (as in modal logic G). This
approach is extended to the cases of CL and C by using a second modality L
which takes care of states. The rules of the calculi manipulate sets of formulas
Γ . We write Γ, F as a shorthand for Γ ∪ {F}. Moreover, given Γ we define the
following sets: Γ� = {�¬A | �¬A ∈ Γ}; Γ�↓

= {¬A | �¬A ∈ Γ}; Γ |∼± =
{A |∼ B | A |∼ B ∈ Γ} ∪ {¬(A |∼ B) | ¬(A |∼ B) ∈ Γ}; ΓL↓

= {A | LA ∈ Γ}.
As mentioned, the calculus for rational logic R makes use of labelled formulas,
where the labels are drawn from a denumerable set A; there are two kinds of
formulas: 1. world formulas, denoted by x : F , where x ∈ A and F ∈ L; 2.
relation formulas, denoted by x < y, where x, y ∈ A, representing the preference
relation. We define ΓM

x→y = {y : ¬A, y : �¬A | x : �¬A ∈ Γ}.
The calculi T ST are sound and complete wrt the semantics, i.e. given a set of

formulas Γ of L, it is unsatisfiable if and only if there is a closed tableau in T ST

having Γ as a root [3,4,5]. The calculi T ST do not guarantee termination. In
order to ensure termination, we have to control the application of the (|∼+) rule,
which can otherwise be applied without any control since it copies its principal
formula A |∼ B in all its conclusions. In [3,4,5], it is shown that it is useless to
apply (|∼+) more than once in the same world, therefore the calculi T ST keep
track of positive conditionals already considered in a world by moving them



KLMLean 2.0: A Theorem Prover for KLM Logics 241

in an additional set Σ in the conclusions of (|∼+), and restrict the application
of this rule to unused conditionals only. The dynamic rules (|∼−) and (�−),
whose conclusions represent a different world wrt the corresponding premise, re-
introduce formulas from Σ in order to allow further applications of (|∼+) in the
other worlds. This machinery is standard. Concerning the labelled calculus T RT,
the same mechanism is applied by equipping each positive conditional with the
list L of worlds-labels in which (|∼+) has already been applied, and restricting
its application by using worlds not belonging to L. In [3,4,5] it is shown that no
other machinery is needed to ensure termination, except for T CT, which needs
a further standard loop-checking machinery.

3 Design of KLMLean 2.0

We describe an implementation of T ST calculi in SICStus Prolog. The pro-
gram, called KLMLean 2.0, is inspired by the “lean” methodology [6] (even if
it does not fit its style in a rigorous manner): the Prolog program consists in a
set of clauses, each one representing a tableau rule or axiom; the proof search
is provided for free by the mere depth-first search mechanism of Prolog, with-
out any additional ad hoc mechanism. KLMLean 2.0 can be downloaded at
http://www.di.unito.it/∼pozzato/klmlean 2.0.

Let us first describe the implementation of non-labelled calculi for P, CL,
and C. We represent each node of a proof tree (i.e. set of formulas) by a Prolog
list. The tableaux calculi are implemented by the predicate

prove(Gamma,Sigma,Tree).

which succeeds if and only if the set of formulas Γ , represented by the list Gamma,
is unsatisfiable. Sigma is the list representing the set Σ of used conditionals, and
it is used in order to control the application of the (|∼+) rule, as described in
the previous section. When prove succeeds, Tree contains a representation of a
closed tableau. For instance, to prove that A |∼ B ∧C,¬(A |∼ C) is unsatisfiable
in P, one queries KLMLean 2.0 with the following goal: prove([a => (b and

c), neg (a => c)],[ ],Tree). The string “=>” is used to represent the condi-
tional operator |∼, “and” is used to denote ∧, and so on. Each clause of prove
implements one axiom or rule of the tableaux calculi; for example, the clauses
implementing (AX) and (|∼−) are as follows:

prove(Gamma, ,tree(...)):-member(F,Gamma),member(neg F,Gamma),!.
prove(Gamma,Sigma,tree(. . . )):-select(neg (A => B),Gamma,NewGamma),

conditionals(NewGamma,Cond),append(Cond,Sigma,DefGamma),
prove([neg B|[box neg A|[A|DefGamma]]],[],. . . ).

The clause for (AX) is applied when a formula F and its negation ¬F belong
to Γ . Notice that F is a formula of the language L, even complex; KLMLean
2.0 extends (AX) to a generic formula F in order to increase its performances,
without losing the soundness of the calculi. The clause for (|∼−) is applied when a
formula ¬(A |∼ B) belongs to Γ . The predicate select removes ¬(A |∼ B) from



242 L. Giordano, V. Gliozzi, and G.L. Pozzato

Gamma, then the auxiliary predicate conditionals is invoked to compute the set
Γ |∼± on the resulting list NewGamma; finally, the predicate prove is recursively
invoked on the only conclusion of the rule. Notice that, since (|∼−) is a dynamic
rule, the conditionals belonging to Σ move to Γ in the conclusion (execution of
append), in order to allow further applications of (|∼+). To search for a derivation
of a set of formulas Γ , KLMLean 2.0 proceeds as follows: first of all, if Γ is an
instance of (AX), the goal will succeed immediately by using the clauses for
the axioms. If it is not, then the first applicable rule will be chosen, e.g. if
Gamma contains a formula neg(neg F), then the clause for (¬) rule will be used,
invoking prove on its unique conclusion. KLMLean 2.0 proceeds in a similar way
for the other rules. The ordering of the clauses is such that the boolean rules
are applied before the other ones. In the case of cumulative logic C, KLMLean
2.0 implements a loop-checking machinery by equipping the prove predicate
with an additional argument, called Analyzed, representing the list of sets of
formulas already considered in the current branch. Clauses implementing T CT

are invoked only if the current set of formulas has not yet been considered, i.e.
if it does not belong to Analyzed.

The theorem prover for rational logic R implements labelled tableau calculi
TRT. It makes use of Prolog constants to represent labels: world formulas x :
A are represented by a Prolog list [x,a], and relation formulas x < y are
represented by a list [x,<,y]. As for the other systems, each clause of the
predicate prove implements a tableau rule or axiom. As an example, here is the
clause implementing the rule (<), capturing the modularity of the preference
relation:

prove(Gamma,Labels,Cond,tree(. . . )):-
member([X,<,Y],Gamma),member(Z,Labels),X\=Z, Y\=Z,
\+member([X,<,Z],Gamma),\+member([Z,<,Y],Gamma),!,
gammaM(Gamma,Y,Z,ResLeft),gammaM(Gamma,Z,X,ResRight),
append(ResLeft,Gamma,LeftConcl),append(ResRight,Gamma,RightConcl),
prove([[Z,<,Y]|LeftConcl],Labels,Cond,. . . ),!,
prove([[X,<,Z]|RightConcl],Labels,Cond,. . . ).

The predicate gammaM(Gamma,X,Y,...) computes the set ΓM
x→y defined in the

previous section. In this system, Cond is used in order to control the application
of the (|∼+) rule: it is a list whose elements have the form [x,a => b], repre-
senting that (|∼+) has been applied to A |∼ B in the current branch by using the
label x. In order to increase its performances, KLMLean for R adopts a heuris-
tic approach (not very “lean”) to implement the crucial (|∼+) rule: the predicate
prove chooses the “best” positive conditional to which apply the rule, and the
“best” label to use. Roughly speaking, an application of (|∼+) is considered to
be better than another one if it leads to an immediate closure of more conclu-
sions. Even if (|∼+) is invertible, choosing the right label in the application of
(|∼+) is highly critical for the performances of the thorem prover. To postpone
this choice as much as possible, for the logic R we have defined a more efficient



KLMLean 2.0: A Theorem Prover for KLM Logics 243

version of the prover, inspired by the free-variable tableaux introduced in [7].
It makes use of Prolog variables to represent all the labels that can be used in
a single application of the (|∼+) rule. This version represents labels by integers
starting from 1; by using integers we can easily express constraints on the range
of the variable-labels. To this regard, the library clpfd is used to manage free-
variables domains. In order to prove Γ, u : A |∼ B, KLMLean 2.0 will call prove
on the following conclusions: Γ, u : A |∼ B, Y : ¬A; Γ, u : A |∼ B, Y : ¬�¬A;
Γ, u : A |∼ B, Y : B, where Y is a Prolog variable. Y will then be instanti-
ated by Prolog’s pattern matching to close a branch with an axiom. Predicate
Y in 1..Max is used to define the domain of Y , where Max is the maximal in-
teger occurring in the branch (i.e. the last label introduced). The list Cond here
contains elements of the form [a => b,Used], where Used is the list of free vari-
ables already introduced to apply (|∼+) in the current branch. In order to ensure
termination, the clause implementing (|∼+) is applied only if |Used|< Max; the
predicate all different([Y|Used]) is then invoked to ensure that all variables
used to apply (|∼+) on the same conditional will assume different values. On
the unsatisfiable set ¬(A ∨ D |∼ F ∨ ¬C ∨ ¬B ∨ A), (A ∧ B) ∨ (C ∧ D) |∼ E ∧ F,¬(P |∼

E ∧F ),¬((A∧B)∨ (C∧D) |∼ G), the free-variables version succeeds in less than 2 ms,
whereas the “standard” version requires 1.9 s. The performances of KLMLean
2.0 are promising. We have tested the implementation for R over 300 sets of
formulas: it terminates its computation in 236 cases in less than 2.5 s (204 in
less than 100 ms). The results for R and for the other KLM logics are reported
in Table 1:

Table 1. Some statistics for KLMLean 2.0

KLM logic 1 ms 10 ms 100 ms 1 s 2.5 s
R (improved version) 176 178 204 223 236

P 166 164 185 206 211
CL 119 118 136 150 159
C 76 77 92 110 123

In future research we intend to increase the performances of KLMLean 2.0 by
experimenting standard refinements and heuristics.

References

1. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models
and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

2. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artifi-
cial Intelligence 55(1), 1–60 (1992)

3. Pozzato, G.L.: Proof Methods for Conditional and Preferential Logics. PhD thesis
(2007)

4. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM
Preferential and Cumulative Logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR
2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005)



244 L. Giordano, V. Gliozzi, and G.L. Pozzato

5. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux Calculi
for KLM Rational Logic R. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 190–202. Springer, Heidelberg
(2006)

6. Beckert, B., Posegga, J.: leantap: Lean tableau-based deduction. Journal of Auto-
mated Reasoning 15(3), 339–358 (1995)

7. Beckert, B., Goré, R.: Free variable tableaux for propositional modal logics. In:
Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 91–106. Springer, Hei-
delberg (1997)



Author Index

Avellone, Alessandro 233

Baader, Franz 11
Baaz, Matthias 28
Balbiani, Philippe 43
Ben-David, Shoham 60
Bonatti, Piero A. 1
Bresolin, Davide 73
Buisman, Linda 90

de Lima, Tiago 43

Fiorino, Guido 233

Gasquet, Olivier 107
Giordano, Laura 238
Girle, Roderic A. 119
Gliozzi, Valentina 238
Goranko, Valentin 73
Goré, Rajeev 90, 133

Herzig, Andreas 43

Ishigaki, Ryo 149

Kikuchi, Kentaro 149
Komendantskaya, Ekaterina 165

Metcalfe, George 28
Meyer, John-Jules Ch. 2

Montanari, Angelo 73
Moscato, Ugo 233
Murray, Neil V. 183

Nguyen, Linh Anh 133

Peltier, Nicolas 199
Peñaloza, Rafael 11
Platzer, André 216

Pozzato, Gian Luca 238

Rosenthal, Erik 183

Said, Bilal 107
Sala, Pietro 73

Tinelli, Cesare 10

Trefler, Richard 60

van Ditmarsch, Hans 43

Weddell, Grant 60


	Title Page
	Preface
	Organization
	Table of Contents
	Nonmonotonic Description Logics – Requirements, Theory, and Implementations
	Our Quest for the Holy Grail of Agent Verification
	Cognitive Agent Programming
	AgentVerification
	Our Approaches
	Programming KARO Agents
	An Executable Core of KARO
	The GOAL Method
	Agent Logics as Program Logics: Grounding BDI-Like Logics
	Dynamic Logic for 3APL
	Rapid Prototyping of APLs in Maude
	The ‘Macro’ Level of Multi-agent Systems

	Conclusion
	References

	An Abstract Framework for Satisfiability Modulo Theories
	Axiom Pinpointing in General Tableaux
	Introduction
	Basic Definitions
	A General Notion of Tableaux
	Pinpointing Extensions of General Tableaux
	Conclusion
	References

	Proof Theory for First Order Łukasiewicz Logic
	Introduction
	Łukasiewicz Logic
	An Approximate Herbrand Theorem
	Skolemization
	The Hypersequent Calculus GŁ
	Adding Quantifiers
	An Infinitary Calculus
	The One Variable Fragment
	References

	A Tableau Method for Public Announcement Logics
	Introduction
	Syntax and Semantics of Public Announcement Logic
	A Tableau Method for Public Announcement Logic
	Decision Procedures for Public Announcement Logics
	A Tableau Method for Arbitrary Announcement Logic
	Related Work and Discussion
	Conclusion
	References

	Bounded Model Checking with Description Logic Reasoning
	Introduction
	Background and Definitions
	Description Logic
	Symbolic Model Checking

	Bounded Model Checking Using Description Logic
	Constructing a Terminology over ALCI
	Example
	Correctness
	Experiments

	Related Work
	Conclusions and Future Work
	References

	Tableau Systems for Logics of Subinterval Structures over Dense Orderings
	Introduction
	Syntax and Semantics of \Dstr
	Structures for \Dstr
	A Small-Model Theorem for \Dstr-Structures
	A Tableau Method for \Dstr
	The Logic \Dirr of the Proper Subinterval Relation
	Conclusions
	References

	A Cut-Free Sequent Calculus for Bi-intuitionistic Logic
	Introduction
	Syntax and Semantics of $\BiInt$
	Our Sequent Calculus $\GBiInt$
	Soundness
	Completeness
	Conclusions and Future Work
	References

	Tableaux with Dynamic Filtration for Layered Modal Logics
	Introduction
	Settings
	Layered Modal Logics
	Simple Tableaux for Layered Logics
	Dynamically Filtrated Tableaux
	Discussion and Conclusion
	References

	The Neighbourhood of S0.9 and S1
	Introduction
	Systems and Tableaux
	Completeness
	Natural Flow
	References

	EXPTIME Tableaux with Global Caching for Description Logics with Transitive Roles, Inverse Roles and Role Hierarchies
	Introduction and Motivation
	Notation and Semantics of \SHI
	A Tableau Calculus for \SHI
	Completeness
	Proving Completeness Via Model Graphs
	Saturation
	Constructing Model Graphs

	A Simple EXPTIME Decision Procedure for \SHI
	Further Work and Conclusions
	References

	Tree-Sequent Methods for Subintuitionistic Predicate Logics
	Introduction
	Semantics of Subintuitionistic Logics
	Tree-Sequent Calculi
	Completeness of Tree-Sequent Calculi
	Completeness of Hilbert-Style Systems
	Conclusion
	References

	A Sequent Calculus for Bilattice-Based Logic and Its Many-Sorted Representation
	Introduction
	Bilattices
	Bilattice-Based Annotated Logic
	Interpretations
	Sequent Calculus for Annotated Logics

	Many-Sorted Representation of BAL
	Many-Sorted Language $\msl^*$ of Signature $\Sigma^*$
	Translation of BAL into $\msl^*$
	Sequent Calculus for $\msl^*$

	Conclusions and Further Work
	References

	Updating Reduced Implicate Tries
	Introduction
	Preliminaries
	Background
	Implicate Tries
	Reduced Implicate Tries
	Computing $ri$-Tries

	$ri$-Tries as Dags
	Updating $ri$-Tries
	Intersecting $ri$-Tries
	Simplifying $ri$-Tries
	Conjoining Unit Clauses
	Reordering $ri$-Tries
	Adding New Clauses

	Future Work
	References

	A Bottom-Up Approach to Clausal Tableaux
	Introduction
	Preliminary
	Bottom-Up Tableaux Construction
	BTC-formulae
	Rules

	Soundness and Completeness
	Complexity
	$q$-Horn Class
	Ordered Clauses
	The Class $\so$

	Conclusion
	References

	Differential Dynamic Logic for Verifying Parametric Hybrid Systems
	Introduction
	Syntax and Semantics of Differential Logic
	Syntax of \dL
	Semantics
	Speed Supervision in Train Control

	A Verification Calculus for Differential Logic
	Rules of the Calculus
	Modular Combination by Side Deduction
	Soundness and Incompleteness

	Verifying Speed Supervision in Train Control
	Conclusions and Future Work
	References

	Improvements to the Tableau Prover PITP
	Introduction
	The Calculus and the Optimizations: An Overview
	Two More Optimizations

	Data Structure Modifications and Other Implementation Issues
	Concluding Remarks
	References

	KLMLean 2.0: A Theorem Prover for KLM Logics of Nonmonotonic Reasoning
	Introduction
	KLM Logics and Their Tableau Calculi
	Design of KLMLean 2.0
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




